
Applying Digital Storytelling to Information System Domains

Vinícius M. Gottin
1
 Edirlei Soares de Lima2 Antonio L. Furtado

1

1

 PUC-Rio, Departamento de Informática, Brasil
2UERJ/IPRJ, Departamento de Modelagem Computacional, Brasil

Abstract

We developed a prototype tool, called IDB, to help

investigate the characterization of information domains by

the stories that emerge from their formal specification.

We explore IDB as an application of serious

entertainment where the functionalities of temporal data-

bases are extended towards an ampler story-base scope.

Keywords: Storytelling, Conceptual Specification,

Entity-Relationship Model, Relational Databases, Plan

Generation, Simulation, Logic Programming, Plot-

Mining.

Authors’ contact:
vgottin@inf.puc-rio.br, edirlei@iprj.uerj.br,

furtado@inf.puc-rio.br

1. Introduction

When elaborating a formal specification, designers always

strive to make sure that all data integrity constraints and

business rules, regulating the legitimate procedures and

barring unauthorized conduct, are enforced. Yet it is hard

to predict from a set of rules what situations can result.

 This work proposes to view information system

domains in terms of the stories emerging from their

formal specification. As Schank and Morson [1995]

assert, human intelligence is led in a very high degree by

the stories in which the person has participated in some

role, or has heard from other persons. We start from

running conceptual level specifications [Furtado and

Ciarlini 2000], expressed in a logic programming format,

appropriate to conduct simulation experiments with the

help of plan-generation and plan-recognition algorithms.

To design and experiment a system, all the way from

conceptual specification to implementation in a Database

Management System (DBMS), we developed the IDB

(Intelligent Databases) prototype tool, now fully

operational. Figure 1 is an overview of the architecture.

Figure 1: The IDB architecture

 In this paper, we describe the usage of IDB system

features towards the goal of transitioning from data-bases

to story-bases as fundamental components of information

systems. We claim that such stories are the best way to

characterize a system operationally, i.e. showing what it

can do as a consequence of the current specification –

which should be revised if some desirable stories,

corresponding to the users' justifiable expectations are

still not deployed, or if transgressive stories, due to

loopholes in the complex rule interactions, are detected.

The paper relies, as a running example, on a

simplified academic database. Section 2 describes the

conceptual specification discipline, which allows to model

not only facts, but also events and agents. Section 3

describes the stepwise transition from workspace to

DBMS environment. Section 4 explores the plot

generation and dramatization features, how recurring

patterns are handled by most specific generalization, and

how past stories are recovered from an event-oriented

LOG. Section 5 contains concluding remarks. A separate

document concerning the full conceptual specification and

the implementation in the DBMS environment is at

http://www.inf.puc-rio.br/~vgottin/ex1_idb.pdf.

2. Three-schemata conceptual modelling

To specify an information system application, it is not

enough to define the classes of facts that will eventually

populate the underlying database. One should also specify

in conceptual terms, i.e. in the language of the application

domain, a fixed repertoire of events, whereby the state of

the mini-world would change. And the pragmatic aspect,

which has to do with how the agents involved would be

motivated to reach their goals by bringing about the

appropriate events, should also be considered (for a

comprehensive discussion, cf. [Ciarlini et al. 2010]).

Facts, events and agents are contemplated, respectively, in

what we call static, dynamic and behavioural schemas.

For brevity, only a few instances of the SWI-Prolog

clauses are shown here, as well as in the next sections.

The static schema, wherein facts are specified in the

Entity-Relationship model [Batini et al. 1991], defines the

entity classes (e.g. student) and their identifying

attributes (e.g. student_name). Entities can have

additional attributes (e.g. credits, for the course entity).

Relationships associate entities (e.g. takes associates

student and course entities; graduated_in associates

student with program).

An instantiation of the schema, representing facts in

clause format, expresses an initial state. E.g.,

course('Art') states the existence of a course entity

with course_name “Art” as identifying attribute. A

separate attribute clause, credits('Art',2), further

characterizes “Art” as a 2-credit course.

The dynamic schema deals with events able to change

the state of the mini-world of the application domain.

They are limited to a pre-defined repertoire of operations,

specified by their pre-conditions and post-conditions

(effects), following the STRIPS formalism [Fikes and

Nilsson 1971]. In our example, one such operation is

change_cr, that changes the value of attribute credits:

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 192

http://www.inf.puc-rio.br/~vgottin/ex1_idb.pdf

operation(change_cr(C,N1,N2)).

deleted(credits(C,N1),change_cr(C,N1,N2)).

added(credits(C,N2),change_cr(C,N1,N2)).

precond(change_cr(C,N1,N2),credits(C,N1)).

The IDB planning algorithm enforces a discipline that

in most cases simplifies the definition of the operations.

For example, it is not necessary to add a pre-condition to

guarantee that credits(C,N2) does not already hold.

The planner interprets the pre-conditions both as tests

for the applicability of an operation Op and, in case of

failure, as sub-goals to be fulfilled by operations to be

introduced before Op in the plan. This recursive treatment

of pre-conditions as sub-goals constitutes the backward

chaining strategy, on which many planning algorithms

(including ours) are based. An especially powerful feature

that extends the planner's ability to pursue goals or sub-

goals involving numerical expressions is constraint

programming [Rossi and Beek 2006], to which we had

access through the SWI-Prolog clpfd library module.

The behavioural schema concerns the authorized

agents, who are motivated to perform events in order to

achieve goals induced by certain situations, as expressed

in situation-objective (sit_obj) rules. As the planner is

applied to these rules, alternative future stories are

composed, as illustrated in section 4. In a separate work

we considered an extension to the schema, which purports

to model the agents' personality traits in terms of drives,

attitudes and emotional profile [Barbosa et al. 2015].

3. From workspace to database environment

Once the schemas have been specified, and a (possibly

empty) initial state has been provided in workspace

memory, one can perform state transitions through the

execute predicate. A call to execute(enroll('Bea',

'Art')) would have the double effect of enrolling Bea in

the Art course and, since this would be her first

enrollment, of registering her as student, with zero credits.

 The execute predicate also works on plans, but

another predicate, goal_exec, has the advantage of

exhibiting the alternative plans that have been found to

achieve the given goal expression, and allowing the user

to choose the alternative to be executed.

 At a second stage, one can still issue the commands in

the Prolog environment, while actually handling an

Oracle database, instead of main memory workspace. The

first step towards this stage is to call the gen_tab

predicate to generate a script (i.e. a ".sql" program) to

translate into relational tables the entities, attributes and

binary relationships defined in the static schema, and

running the script in order to create and install the tables

in the DBMS environment.

This is done by invoking our predicate

run_sqlplus_script, which takes the name of the script

as its only parameter. Tables are created for each of the

specified entities and relationships, with columns for each

of their attributes. Indeed, for any existing one-to-n

relationship no table need be created, being enough to add

a column to the table of the participating entity for which

the other entity represents yet another (single-valued)

attribute. In our example, however, all relationships are

m-to-n, and adoptiing this optimization strategy would

violate the normalization principle, famously imposed by

relational model practice. So, STUDENT(STUDENT_NAME,

CREDITS_WON) is created for the student entity, and

TAKES(STUDENT_NAME,COURSE_NAME) for the takes

relationship that relates students and courses.

 In addition, there are two tables that are used by every

IDB application, for data administration purposes: the REF

table and the LOG table. The REF table stores the granted

references, which are distinct positive integers that will

serve as identifiers for the IDB-transactions. This special

type of transactions controlled by IDB allows to

characterize a potentially long process, which may be

resumed in future sessions. The LOG table registers the

execution of the operations, giving, for each execution,

the reference of the transaction to which it belongs, the

timestamp read from the system's clock, and the event

(name and parameter list of the operation executed).

The next step is to produce a mechanism capable of

updating the relational tables, which is done by the

command compile_ops, whereby a procedural version of

the operations is compiled from the previously introduced

declarative specification. Their main components are

predicates that have been implemented to execute, via

ODBC, the basic SQL data manipulation commands. The

pre-conditions are now checked by select calls, and the

post-conditions (effects) take the form of insert, delete

and update calls. The planner is still available to work

upon the information now stored in the Oracle database.

The first two stages are intended for the specification

tasks and for the performance of simulation runs, with the

help of the plan-generator. To facilitate the transition to a

third stage, a second compiler is provided to translate

from the procedural version of the operations, produced

by the first compiler, into Oracle stored procedures. The

Oracle create statements to install in the database the

compiled procedures are generated by the gen_procs

predicate, whose output is recorded in a script file, to be

transferred and processed by run_sqlplus_script,

exactly as done to create the relational tables.

At this point, the database is ready for routine

operational usage, employing some commercially

available DBMS, such as Oracle, possibly together with

some suitable host language. Even after reaching the final

database stage, however, we find advisable to keep the

logic programming specification, since it serves several

practical purposes, including: training the prospective

users; simulation and continuous testing; documentation;

redesign; monitoring; plot mining [Furtado et al 2007],

and all sorts of opportunities to employ Artificial

Intelligence methods of analysis (see for example

[Barbosa et al. 2007]).

4. Application domains as story genres

While plan generation opens the way to explore

alternative future stories, the LOG of events that the IDB

prototype maintains as a relational database table works

as a repository of past stories, from which typical plans

and sequence patterns resulting from actual usage can be

extracted, to be profitably employed later for recognizing

and predicting what can be expected from the current

users' observed actions.The LOG – repository of past

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 193

stories – can be inspected at any time, either in the Prolog

environment, by entering:

:- select_log(R,Ts,Ev).

or over the Oracle Database XE shell, by the command:

select ref,ts,event from log

order by ref,ts,event;

 The LOG contains the answer to temporal queries,

such as: how many total credits had Joe in July 15th 2011,

and what event produced that value? To reply, one

searches the LOG for an event prior to the indicated date

that would be able to alter the value, and then makes sure

that no event able to modify it has occurred between the

two timestamps. Also, it is possible to revert to a past

state, by determining the net effects of the events

occurring since the system started until the given date.

 By calling show_plot, one can visualize the contents

of the LOG in a storyboard-like comic strip aspect, with

playful images and colloquial template-driven natural

language text. This plot-dramatization feature is provided

by Plot Viewer, an additional module of IDB,

implemented in C#. The compositing process uses the

event description to create graphical illustrations

according to the event parameters. Gender is established

by inspecting extensive first name tables, which are

updated by querying the user whenever a still unknown

name comes up, so that male and female actors are drawn

differently. More details on the generation of comic strips

can be found in our previous work on interactive comics

[Lima et al. 2013].

Figure 2 ilustrates show_log when applied to a

selected part of the LOG that concentrates on “Bea”, a

model student with praiseworthy performance, once

involved('Bea',Story) is indicated.

Student Bea

enrolled in course

Art.

Student Bea

enrolled in course

Semiotics.

Student Bea,

having passed

course Semiotics,

has a total of 3

credits.

Student Bea,

having passed

course Art, has a

total of 5 credits.

Student Bea has

graduated in

program Alpha.

Figure 2: Bea's academic life in storyboard presentation

Besides visualizing the existing stories, IDB allows

the hypothetical consideration of future events. For the

goals supplied by the situation-objective rules, one may

look for some plan (also amenable to storyboard display).

In our example, one of the rules states: the Chairman,

when noting that a course was created two or more years

ago and no student has passed it until now, would be

inclined to remove the course. This rule involves an

access to the LOG: are there courses initiated two or more

years ago that no student has up to now been able to pass?

 Suppose that this is the case with the Design course,

and that the present Chairman wants to find what would

happen if two students, say Ken and Laura, are still taking

it. How can the course be cancelled? The simulation can

be run either against the LOG or by placing these facts in

the workspace. The Chairman will observe that one

generated plan would cause Ken to drop the course, and

Laura to transfer to another course that she has not yet

taken, since cancel requires as precondition that there

should be no student currently taking the course:

P = start=>drop(Ken, Design)=> transfer(Laura,

Design, Art)=>cancel(Design)

But other plans are also presented, as the user keeps

entering the Prolog directive to search for alternatives. In

one of these, the plan-generator responds in a strikingly

different way in Laura's case, suggesting that Laura be

automatically approved!

P = start=>drop(Ken, Design, Semiotics)=>

pass(Laura, Design, 0, 1)=>cancel(Design)

This comes much to the Chairman's surprise, as well

as to ours, authors of the specification, who failed to

recall – but the "system" would not – that ceasing to take

a course had been declared as one of the effects of the

pass operation!

Once this has been recognized as a possibility, it is up

to the Chairman to decide whether or not it is acceptable.

In the negative case, a written note might be sent to the

application manager, demanding a change in the

specification (to be pursued all the way down to the

implementation).

Note, anyway, that the goals generated by the

sit_obj rules are no more than recommendations, which

the agents are not compelled to accept. For example, we

have another rule that states that a student who dropped a

course and is not currently taking any course ought to be

interested in some course with a smaller number of credits

(and therefore presumably easier). Suppose however that

Zoe, who failed Art (2 credits) and is recommended by

the planner to take Design (1 credit), ends up enrolling in

Semiotics (3 credits, and by assumption more difficult).

 Suppose further that a recurring pattern can be

extracted from the LOG, revealing that the choices of

several students quite often coincided with Bea's choices.

To formulate a pattern, one computes the most specific

generalization of the detected similar lists of events,

keeping the constants that identically fill corresponding

positions, and consistently introducing variables wherever

different constants occur.

 We may imagine that, reputed to be a model student,

Bea's actions tend to be imitated by her colleagues.

Successful completion of the courses involved would

provide an even more influential pattern. At this point, we

are perhaps in a position to risk an explanation for Zoe's

peculiar conduct: having observed her choice of

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 194

Semiotics, which Bea took successfully (as registered in

the LOG), we express the conjecture that this is no mere

coincidence, provided that Zoe's enrollment, if in fact

influenced by Bea's enrollment, did occur after hers. The

pattern-recognition algorithm would then instantiate the

pattern with the observation of Zoe's enrollment, in an

extended plot format [Karlsson et al. 2009], indicating

explicitly the partial-order constraints.

 Lastly, there is, so to speak, a meta-story to consider,

concerning how the system itself evolves during its

lifetime, in response to the demands of dissatisfied users.

The Chairman, in our example, might demand a

mechanism for determining whether a student can

reasonably be approved when a course that the student is

taking is to be cancelled. A common sense extension to

our oversimplified specification would be to add a

performance attribute to the takes relationship, whose

current value would be taken into consideration whenever

the precondition of pass is tested. Also, recalling the

questionable criteria that, in our example, a student like

Zoe would use to choose a substitute course, we included

in that precondition a call to predicate eval_min, whereby

an online multiple-choice exam checks whether the

student meets the minimum requirements for approval.

6. Concluding remarks

The distinctive features of our IDB project, namely

conceptual modeling not only of facts but also of events

and agents, the availability of a LOG to register past

events, and of a plan generator to project alternative

futures, enabled us to achieve an effective transition from

data-bases to story-bases as the fundamental component

of information systems. To implement the proposed

architecture, logic programming, complemented by

constraint programming, Oracle, C#, and R (that we are

now trying for statistical analysis) proved to be adequate.

 Our approach helps application administrators and the

various classes of prospective users to grasp the

functionality of the specified system, by being told in

what kinds of stories they are invited to participate. And,

with the intent to come closer to the seemingly

contradictory ideal of serious entertainment, we equipped

IDB with a storyboard facility for narrating the stories by

images and template-driven natural language text.

 From the viewpoint of the IDB machinery, much

remains to be done, among other concerns to extend the

LOG to include already scheduled future transactions (an

AGENDA facility), and provide friendly user interfaces

that may totally hide the clausal notation interactions

displayed on the SWI-Prolog screen. Also it must be

recognized that, until now, we have been working with

very small examples. For scaling-up the use of IDB to

real-life business applications an even greater effort

should be invested, both by enhancing the implemented

algorithms and by adopting a modular divide-and-conquer

design strategy [Casanova et al. 1991, Graefe et al. 2014]

to help reducing the size and complexity of the various

tasks involved at each stage.

 From the viewpoint of IDB utilization, two lines for

future research seem particularly relevant to our group.

The first is to adapt it for training purposes. Users would

be exposed to the stories that emerge from the

specification, with pauses between the successive

"chapters", during which they would be called to interact

by considering the current state of the mini-world, and

making decisions to affect in what direction the story

would branch in continuation. By transposing IDB to a

client-server architecture, multiuser participation could be

enabled, eventually permitting to add a stimulating game

feature to training, with criteria to grade the participants,

who would compete and/or collaborate to reach goals,

subject to the limitations of scarce resources.

 The other line, which can be termed plot-mining or

story-mining, looks even more promising, as evidenced by

research in the field of process mining [Aalst 2011]. We

believe that having a time-stamped LOG to register

transactions – composed of conceptually meaningful

events – is a major asset towards a semantically and

pragmatically richer approach to perform knowledge

discovery over the processes that may occur in a given

information system.

References

AALST, W. M. P. VAN DER, 2011. Process Mining: Discovery,

Conformance and Enhancement of Business Processes.

Springer-Verlag, Berlin.

BARBOSA, S. D. J., BREITMAN, K. K., FURTADO, A. L.,

CASANOVA, M. A., 2007. Similarity and analogy over

application domains. In: Proceedings of the Simpósio and

Brasileiro Banco Dados, João Pessoa.

BARBOSA, S. D. J. ET AL, 2015, Plot Generation with

Character-Based Decisions. Computers in Entertainment, v.

12, pp. 1-21.

BATINI, C., CERI, S. AND NAVATHE, S., 1991. Conceptual

Design: an Entity-Relationship Approach. Addison-Wesley.

CASANOVA, M.A. ET AL., 1991. A software tool for modular

database design. ACM Transactions on Database Systems,

vol. 16, no. 2, pp. 209-234.

CIARLINI, A.E.M. ET AL, 2010. Modeling Interactive Storytelling

Genres as Application Domains. Journal of Intelligent

Information Systems, v. 35, pp. 347-381.

FURTADO, A.L., CIARLINI, A.E.M., 2000. Generating Narratives

from Plots using Schema Information. In: Proceedings of the

5th International Workshop on Applications of Natural

Language for Information Systems. Springer-Verlag.

FURTADO, A.L., CASANOVA, M.A., BARBOSA, S.D.J.,

BREITMAN, K.K., 2007. Plot mining as an aid to

characterization and planning. Technical Report MCC07,

PUC-Rio.

FIKES, R. E. AND NILSSON, N. J., 1971. STRIPS: A new

approach to the application of theorem proving to problem

solving. Artificial Intelligence , 2(3-4).

GRAEFE, G. ET AL., 2014. In-memory performance for big

data. In: Proceedings of the VLDB Endowment, vol. 8, no 1.

KARLSSON, B. ET AL, 2009. A plot-manipulation algebra to

support digital storytelling. In: Proceedings of IFIP

International Federation for Information Processing (ICEC).

LIMA, E.S., FEIJÓ, B., FURTADO, A.L., BARBOSA, S.D.J.,

POZZER, C.T., CIARLINI, A.E.M., 2013. Non-Branching

Interactive Comics. In: Proceedings of the 10th International

Conference on Advances in Computer Entertainment

Technology, pp. 230-245.

ROSSI, F., AND BEEK, P. 2006. Handbook of Constraint

Programming, Elsevier Science.

SCHANK, R. AND MORSON, G.S., 1995. Tell Me A Story.

Northwestern University Press.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Short Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 195

