

INF 1771 – Inteligência Artificial

Aula 11 – Aprendizado de Máquina

Edirlei Soares de Lima elima@inf.puc-rio.br

Agentes Vistos Anteriormente

Agentes baseados em busca:

- Busca cega
- Busca heurística
- Busca local

Agentes baseados em lógica:

- Lógica proposicional
- Lógica de primeira ordem

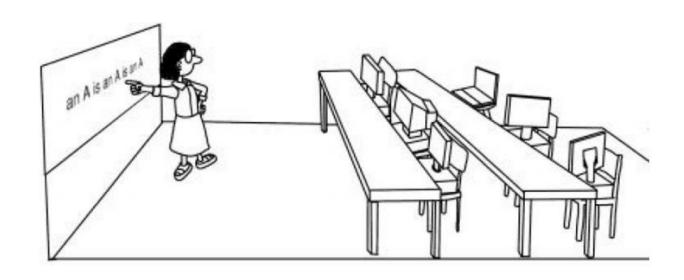
Agentes baseados em planejamento:

- Planejamento de ordem parcial
- Planejamento em ambientes não-determinísticos

Introdução

- Computadores realmente s\u00e3o capazes de aprender?
- Infelizmente ainda não sabemos exatamente como fazer computadores aprender de uma maneira similar a maneira como os humanos aprendem.
- Entretanto, existem algoritmos que s\(\tilde{a}\)o eficientes em certos tipos de tarefas de aprendizagem.

O que é Aprendizagem de Máquina?



O que é Aprendizagem de Máquina?

 Aprender significa "mudar para fazer melhor" (de acordo com um dado critério) quando uma situação similar acontecer.

 Aprendizagem, não é memorizar. Qualquer computador pode memorizar, a dificuldade está em generalizar um comportamento para uma nova situação.

Importância do Aprendizado

Por que é importante para um agente aprender?

 Os programadores não podem antecipar todas as situações que o agente pode encontrar.

Exemplo: Um robô programado para andar em um único labirinto pode não saber andar em outros.

 Os programadores não podem antecipar todas as mudanças que podem acontecer com o passar do tempo.

Exemplo: Agente programado para prever as melhores opção de bolsa para investir precisa se adapta quando o ambiente muda.

 Os programadores nem sempre sabem encontrar a solução dos problemas diretamente.

Exemplo: Programar um sistema para reconhecer faces não é algo trivial.

Como Aprender Algo?

Exemplos:

- Considerando um agente treinando para se tornar um motorista de táxi. Toda vez que o instrutor gritar "freio!" o agente pode aprender uma condição de quando ele deve frear.
- Ao ver várias imagens que contem ônibus, o agente pode aprender a reconhecê-los.
- Ao tentar ações e observar os resultados.
 Por exemplo, ao frear forte em uma estrada molhada pode aprender que isso não tem um efeito bom.

Formas de Aprendizado

Aprendizado Supervisionado

Aprendizado Não Supervisionado

Aprendizado Por Reforço

- Observa-se alguns pares de exemplos de entrada e saída, de forma a aprender uma função que mapeia a entrada para a saída.
- Damos ao sistema a "resposta correta" durante o processo de treinamento.
- É eficiente pois o sistema pode trabalhar diretamente com informações corretas.
- Útil para classificação, regressão, estimação de probabilidade condicional (qual é a probabilidade de um cliente com um determinado perfil comprar um determinado produto?)

Exemplo:

- Considerando um agente treinando para ser se tornar um motorista de táxi. Toda vez que o instrutor gritar "freio!" o agente pode aprender uma condição de quando ele deve frear.
- A entrada é formada pelos dados percebidos pelo agente através de sensores. A saída é dada pelo instrutor que diz quando se deve frear, virar a direita, virar a esquerda, etc.

 O agente reconhece padrões nos dados de entrada, mesmo sem nenhum feedback de saída.

 Por exemplo, um agente aprendendo a dirigir pode gradualmente desenvolver um conceito de dias de bom trafego e dias de trafego congestionado mesmo sem nunca ter recebido exemplos rotulados por um professor.

Aprendizado Por Reforço

- O agente recebe uma série de reforços, recompensas ou punições.
- Por exemplo, a falta de uma gorjeta no final do percurso da ao agente taxista uma indicação de que ele fez algo errado.
- Cabe ao agente reconhecer qual das ações antes do reforço foram as maiores responsáveis por isso.
- Não damos a "resposta correta" para o sistema. O sistema faz uma hipótese e determina se essa hipótese foi boa ou ruim.

Fases da Aprendizagem

Treinamento

- Apresenta-se exemplos ao sistema.
- O sistema "aprende" a partir dos exemplos.
- O sistema modifica gradualmente os seus parâmetros para que a saída se aproxime da saída desejada.

Utilização

- Novos exemplos jamais visto s\u00e3o apresentados ao sistema.
- O sistema deve generalizar e reconhecê-los.

Exemplos de Treinamento (Aprendizado Supervisionado)

Atributos

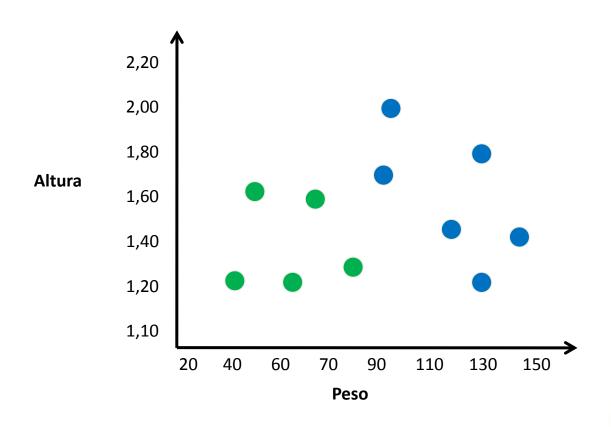
Exemplo	Atrib ₁	Atrib ₂	Atrib ₃	Atrib ₄	Atrib ₅	Atrib ₆	Classe
X ₁	0.24829	0.49713	0.00692	-0.020360	0.429731	-0.2935	1
X ₂	0.24816	0.49729	0.00672	0.0065762	0.431444	-0.29384	1
X ₃	0.24884	0.49924	0.01047	-0.002901	0.423145	-0.28956	3
X ₄	0.24802	0.50013	0.01172	0.001992	0.422416	-0.29092	2
X ₅	0.24775	0.49343	0.01729	-0.014341	0.420937	-0.29244	2

Classificação de Exemplos Desconhecidos

Atributos

Exemplo	Atrib ₁	Atrib ₂	Atrib ₃	Atrib ₄	Atrib ₅	Atrib ₆	Classe
X ₁	0.22829	0.48713	0.00592	-0.010360	0.419731	-0.2845	?
X ₂	0.21816	0.48729	0.00572	0.0045762	0.421444	-0.28484	?
X ₃	0.23884	0.49824	0.01447	-0.003901	0.433145	-0.24956	?
X ₄	0.23002	0.49013	0.02172	0.002992	0.412416	-0.28092	?
X ₅	0.24575	0.49243	0.01029	-0.015341	0.430937	-0.28244	?

Espaço de Características



Tipos de Problemas

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma face: de quem é esta face (dentre um número finito).

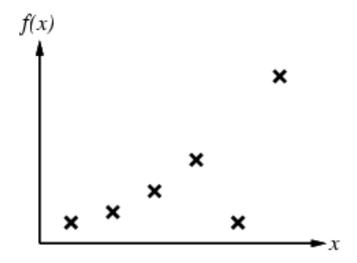
Regressão:

- Faz uma predição a partir de exemplos.
- Predizer o valor da bolsa amanhã, dados os valores de dias e meses anteriores.

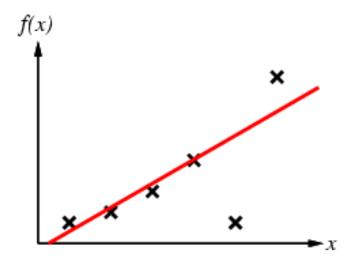
• Estimação de Densidade:

Estima quais são as N categorias presente nos dados.

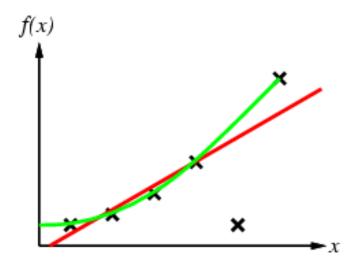
- Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxime da verdadeira função f(x) (a qual gerou os dados e é desconhecida).
- Existe um número infinito de funções h.



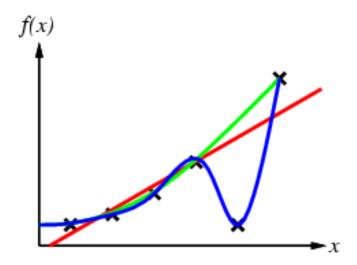
- Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxime da verdadeira função f(x) (a qual gerou os dados e é desconhecida).
- Existe um número infinito de funções h.



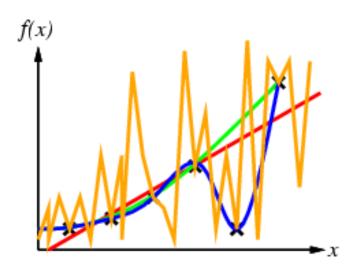
- Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxime da verdadeira função f(x) (a qual gerou os dados e é desconhecida).
- Existe um número infinito de funções h.



- Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxime da verdadeira função f(x) (a qual gerou os dados e é desconhecida).
- Existe um número infinito de funções h.



- Dado uma quantidade finita de dados para o treinamento, temos que derivar uma função h que se aproxime da verdadeira função f(x) (a qual gerou os dados e é desconhecida).
- Existe um número infinito de funções h.



Generalizar é Difícil

Não queremos aprender por memorização

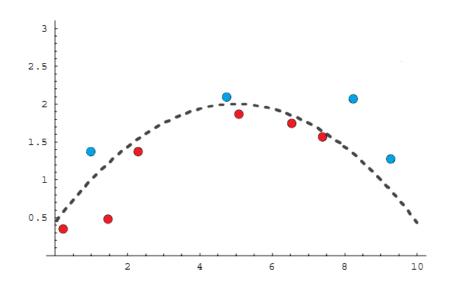
- Boa resposta sobre os exemplos de treinamento somente.
- Fácil para um computador.
- Difícil para os humanos.

Aprender visando generalizar

- Mais interessante.
- Fundamentalmente mais difícil: diversas maneiras de generalizar.
- Devemos extrair a essência, a estrutura dos dados e não somente aprender a boa resposta para alguns casos.

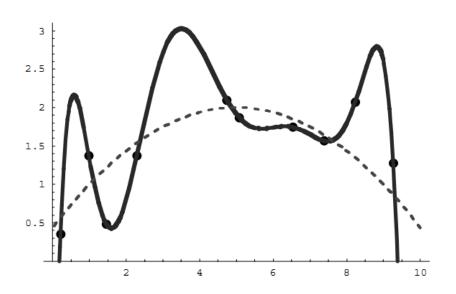
Exemplo

• Função-alvo f (melhor resposta possível).



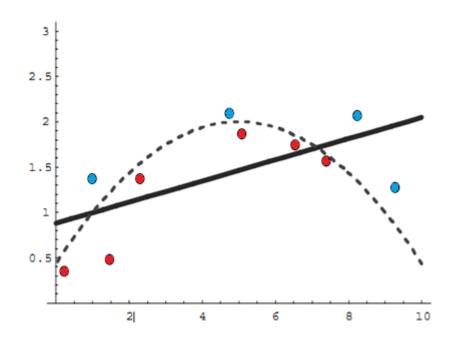
Exemplo - Overfitting

• Erro baixo sobre os exemplos de aprendizagem. Mais elevado para os de teste.



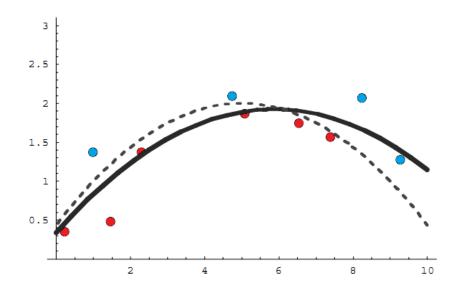
Exemplo - Underfitting

• Escolhemos um modelo muito simples (linear): erro elevado na aprendizagem.



Exemplo – Um Bom Modelo

 O modelo é suficientemente flexível para capturar a forma curva da função f mais não é suficiente para ser exatamente igual a função f.



Teoria de Aprendizado Computacional

- Como sabemos se a hipótese h está próxima da função-alvo f, se não conhecemos o que é f?
- Este é um aspecto de uma questão mais abrangente: como saber se um algoritmo de aprendizado produziu uma teoria que preverá corretamente o futuro?
- Qualquer hipótese que é consistente com um conjunto suficientemente grande de exemplos é pouco provável de estar seriamente errada.

Algoritmos

Aprendizado Supervisionado

- Árvores de Decisão
- KNN
- SVM
- Redes Neurais

Aprendizado Não Supervisionado

- Clusterização Sequencial
- Clusterização Hierárquica
- K-Means

Aprendizado Por Reforço

Leitura Complementar

 Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach, 3nd Edition, Prentice-Hall, 2009.

Capítulo 18: Learning from Observations

