

INF 1771 – Inteligência Artificial

Aula 17 – Aprendizado Não-Supervisionado

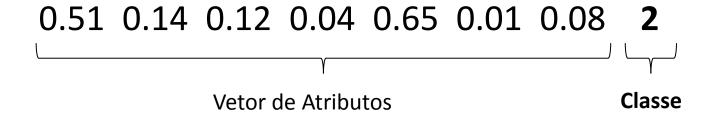
Edirlei Soares de Lima elima@inf.puc-rio.br

Formas de Aprendizado

- Aprendizado Supervisionado
 - Árvores de Decisão.
 - K-Nearest Neighbor (KNN).
 - Support Vector Machines (SVM).
 - Redes Neurais.
- Aprendizado Não-Supervisionado

Aprendizado Por Reforço

• No aprendizado **supervisionado**, todas os exemplos de treinamento eram **rotulados**.



 Estes exemplos são ditos "supervisionados", pois, contém tanto a entrada (atributos), quanto a saída (classe).

 Porém, muitas vezes temos que lidar com exemplos "não-supervisionados", isto é, exemplos não rotulados.

Por que?

 Coletar e rotular um grande conjunto de exemplos pode custar muito tempo, esforço, dinheiro...

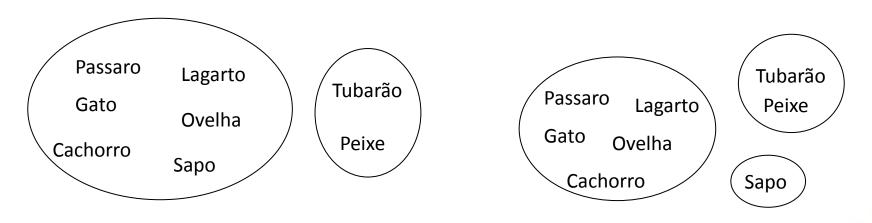
 Entretanto, podemos utilizar grandes quantidades de dados não rotulados para encontrar padrões existentes nestes dados. E somente depois supervisionar a rotulação dos agrupamentos encontrados.

 Esta abordagem é bastante utilizada em aplicações de mineração de dados (datamining), onde o conteúdo de grandes bases de dados não é conhecido antecipadamente.

 O principal interesse do aprendizado nãosupervisionado é desvendar a organização dos padrões existentes nos dados através de clusters (agrupamentos) consistentes.

 Com isso, é possível descobrir similaridades e diferenças entre os padrões existentes, assim como derivar conclusões úteis a respeito deles.

• Exemplos de agrupamentos (clusters):



Existencia de pulmões

Ambiente onde vivem

Clusterização

 A clusterização é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares.

 Um cluster é uma coleção de objetos que são similares uns aos outros (de acordo com algum critério de similaridade pré-definido) e dissimilares a objetos pertencentes a outros clusters.

Critério de Similaridade

• A similaridade é difícil de ser definida...

- As etapas do processo de aprendizagem não supervisionada são:
 - (1) Seleção de atributos
 - (2) Medida de proximidade
 - (3) Critério de agrupamento
 - (4) Algoritmo de agrupamento
 - (5) Verificação dos resultados
 - (6) Interpretação dos resultados

• (1) Seleção de Atributos:

 Atributos devem ser adequadamente selecionados de forma a codificar a maior quantidade possível de informações relacionada a tarefa de interesse.

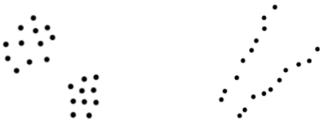
 Os atributos devem ter também uma redundância mínima entre eles.

• (2) Medida de Proximidade:

- Medida para quantificar quão similar ou dissimilar são dois vetores de atributos.
- É ideal que todos os atributos contribuam de maneira igual no cálculo da medida de proximidade.
 - Um atributo não pode ser dominante sobre o outro, ou seja, é importante normalizar os dados.

• (3) Critério de Agrupamento:

- Depende da interpretação que o especialista dá ao termo sensível com base no tipo de cluster que são esperados.
- Por exemplo, um cluster compacto de vetores de atributos pode ser sensível de acordo com um critério enquanto outro cluster alongado, pode ser sensível de acordo com outro critério.



• (4) Algoritmo de Agrupamento:

 Tendo adotado uma medida de proximidade e um critério de agrupamento devemos escolher um algoritmo de clusterização que revele a estrutura agrupada do conjunto de dados.

• (5) Validação dos Resultados:

- Uma vez obtidos os resultados do algoritmo de agrupamento, devemos verificar se o resultado esta correto.
- Isto geralmente é feito através de testes apropriados.

• (6) Interpretação dos Resultados:

 Em geral, os resultados da clusterização devem ser integrados com outras evidências experimentais e análises para chegar as conclusões corretas.

 Diferentes escolhas de atributos, medidas de proximidade, critérios de agrupamento e algoritmos de clusterização levam a resultados totalmente diferentes.

• Qual resultado é o correto?

Clusterização

Dado um conjunto de dados X:

$$X = \{x_1, x_2, \ldots, x_n\}$$

- Definimos como um m-agrupamento de X a partição de X em m conjuntos (clusters ou grupos) C_1 , C_2 , ..., C_m tal que as três condições seguintes sejam satisfeitas:
 - Nenhum cluster pode ser vazio ($C_i \neq \emptyset$).
 - A uni\(\tilde{a}\) ode todos os cluster deve ser igual ao conjunto de dados que gerou os clusters, ou seja, X.
 - A interseção de dois clusters deve ser vazio, ou seja, dois cluster não podem conter vetores em comum (C_i ∩ C_j = Ø).

Clusterização

 Os vetores contidos em um cluster C_i devem ser mais similares uns aos outros e menos similares aos vetores presentes nos outros clusters.

Tipos de Clusters:

Clusters compactos

Clusters alongados

Clusters esféricos e ellipsoidals

Medidas de Proximidade

Medidas de Dissimilaridade:

- Métrica l_p ponderada;
- Métrica Norma l_∞ ponderada;
- Métrica l₂ ponderada (Mahalanobis);
- Métrica l_p especial (Manhattan);
- Distância de Hamming;

Medidas de Similaridade:

- Produto interno (inner);
- Medida de Tanimoto;

Algoritmos de Clustering

 Os algoritmos de clusterização buscam identificar padrões existentes em conjuntos de dados.

- Os algoritmos de clusterização podem ser divididos em varias categorias:
 - Sequenciais;
 - Hierárquicos;
 - Baseados na otimização de funções custo;
 - Outros: Fuzzy, SOM, LVQ...

Algoritmos Sequenciais

São algoritmos diretos e rápidos.

 Geralmente, todos os vetores de características são apresentados ao algoritmo uma ou várias vezes.

• O resultado final geralmente depende da ordem de apresentação dos vetores de características.

Algoritmos Sequenciais

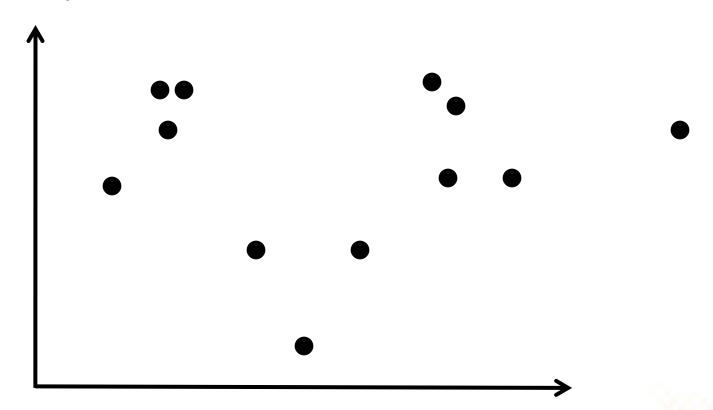
- Basic Sequential Algorithmic Scheme (BSAS)
 - Todos os vetores s\(\tilde{a}\) apresentados uma \(\tilde{u}\) nica vez ao algoritmo.
 - Número de clusters não é conhecido inicialmente.
 - Novos clusters são criados enquanto o algoritmo evolui.

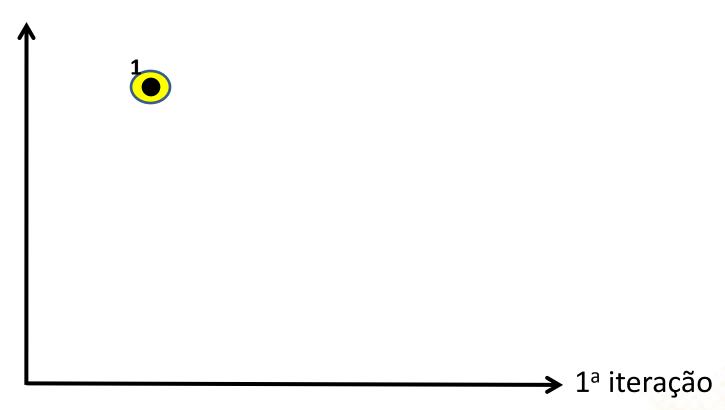
Parâmetros do BSAS:

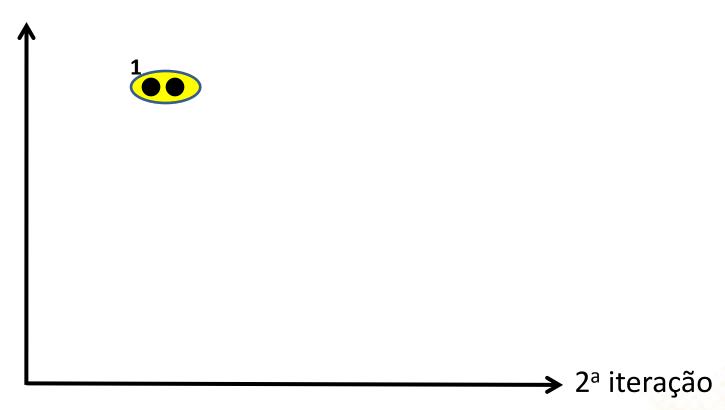
- d(x, C): métrica de distância entre um vetor de características x e um cluster C.
- O: limiar de dissimilaridade.
- q: número máximo de clusters.

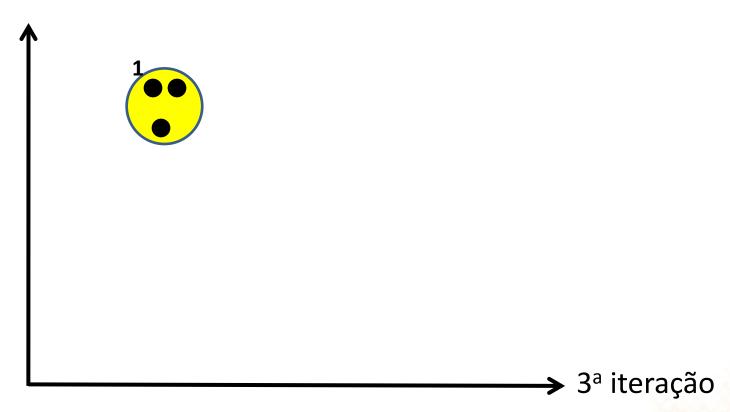
Ideia Geral do Algoritmo:

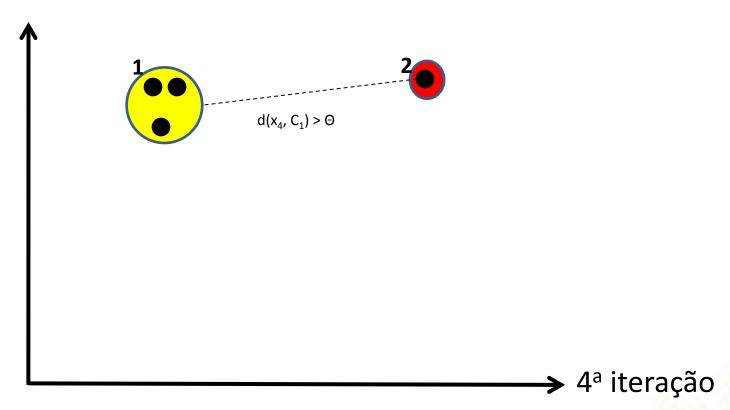
 Para um dado vetor de características, designá-lo para um cluster existente ou criar um novo cluster (depende da distância entre o vetor e os clusters já formados).

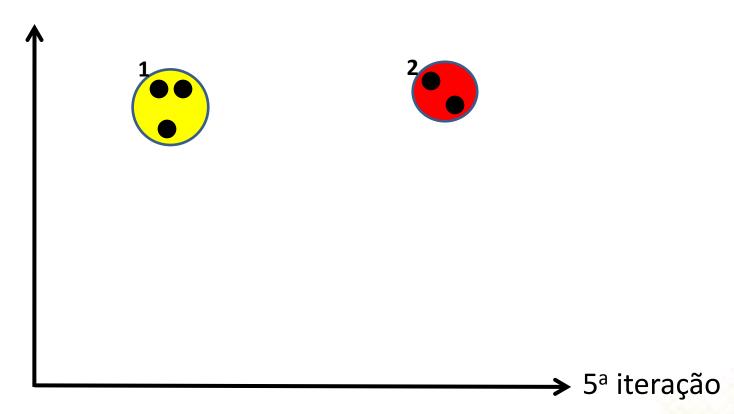


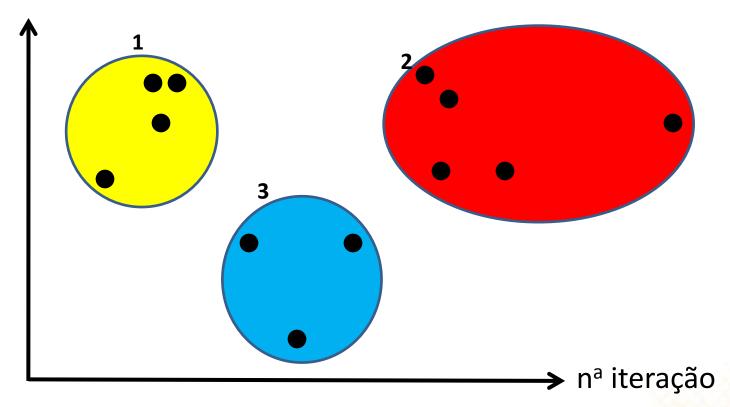












 Os algoritmos de clusterização hierárquica pode ser divididos em 2 subcategorias:

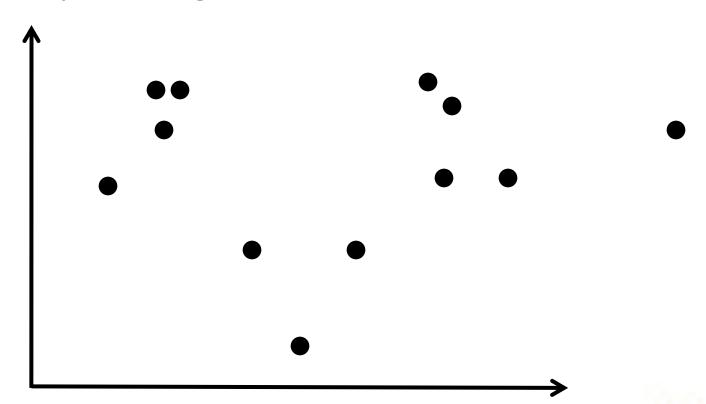
Aglomerativos:

- Produzem uma sequência de agrupamentos com um número decrescente de clusters a cada passo.
- Os agrupamentos produzidos em cada passo resultam da fusão de dois clusters em um.

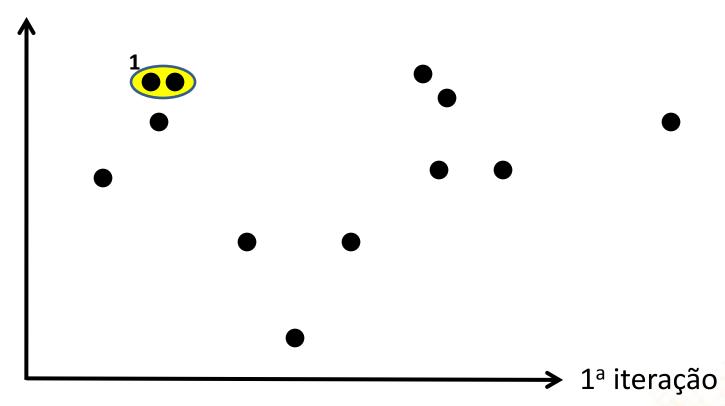
Divisivos:

- Atuam na direção oposta, isto é, eles produzem uma sequência de agrupamentos com um número crescente de clusters a cada passo.
- Os agrupamentos produzidos em cada passo resultam da partição de um único cluster em dois.

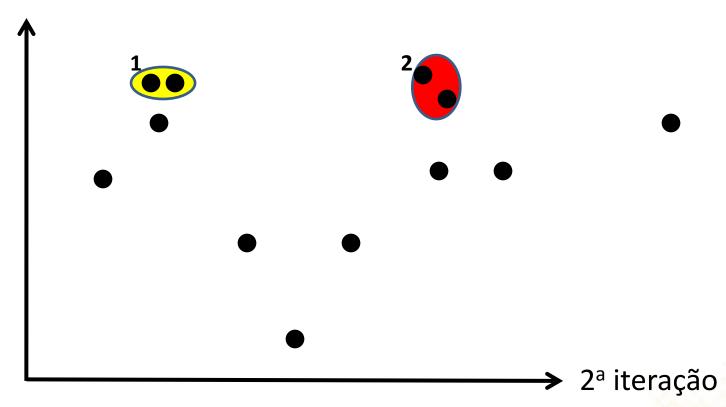
Exemplo 1 – Aglomerativo:



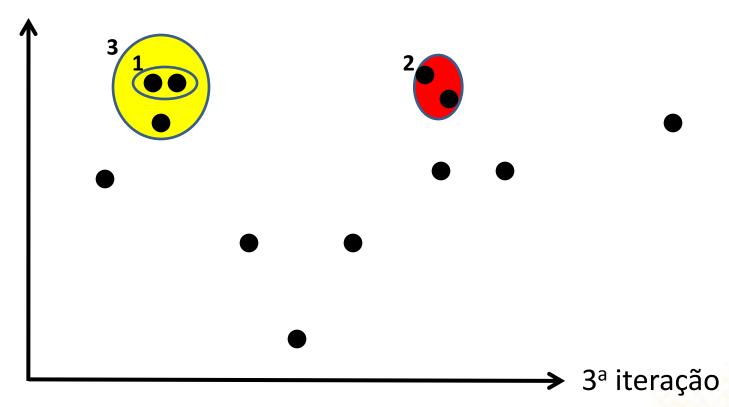
• Exemplo 1 – Aglomerativo:



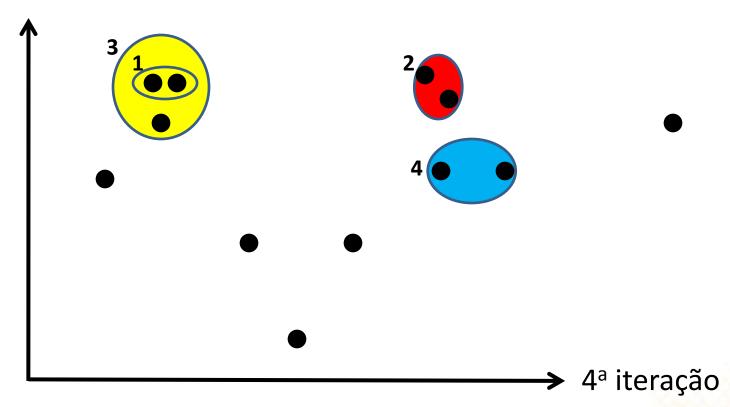
• Exemplo 1 – Aglomerativo:



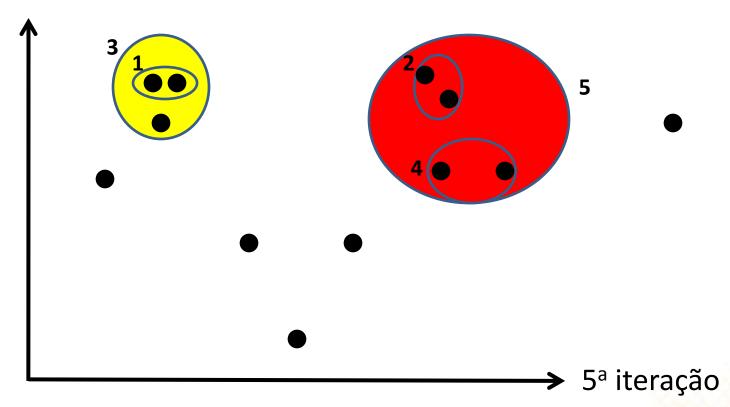
• Exemplo 1 – Aglomerativo:



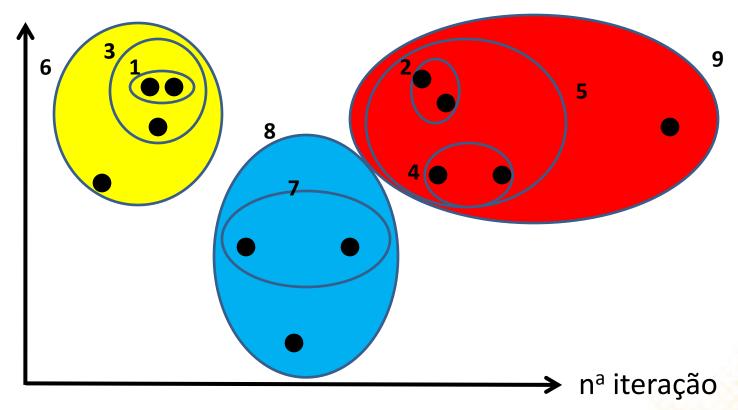
• Exemplo 1 – Aglomerativo:



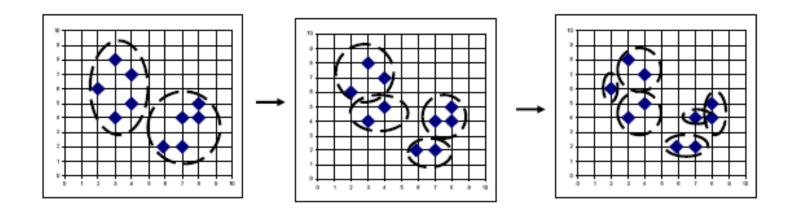
• Exemplo 1 – Aglomerativo:



• Exemplo 1 – Aglomerativo:



• Exemplo 2 – Divisivo:



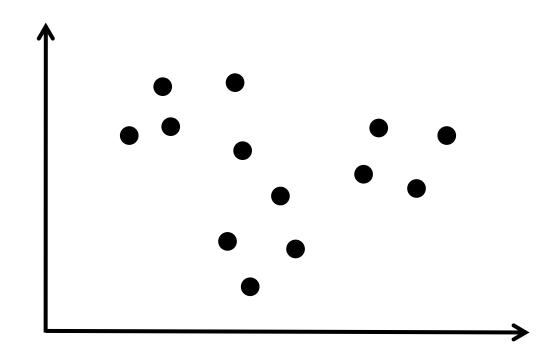
Processo inverso.

K-Means

- É a técnica mais simples de aprendizagem não supervisionada.
- Consiste em fixar **k centróides** (de maneira aleatória), um para cada grupo (clusters).
- Associar cada indivíduo ao seu centróide mais próximo.
- Recalcular os centróides com base nos indivíduos classificados.

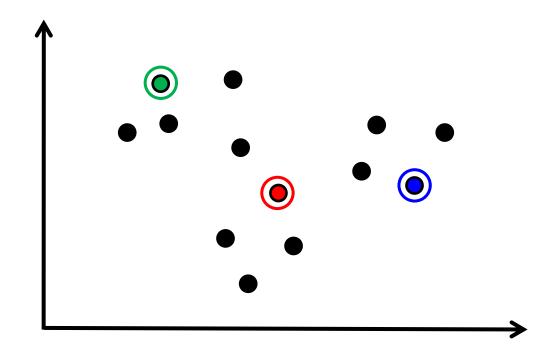
- (1) Selecione k centróides iniciais.
 - (2) Forme k clusters associando cada exemplo ao seu centróide mais próximo.
 - (3) Recalcule a posição dos centróides com base no centro de gravidade do cluster.
- (4) Repita os passos 2 e 3 até que os centróides não sejam mais movimentados.

• Exemplo:



Exemplo:

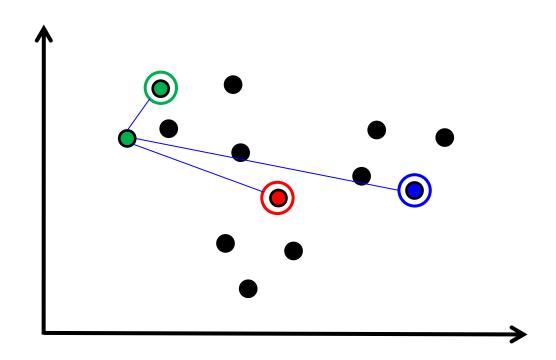
k = 3



Seleciona-se k centróides iniciais.

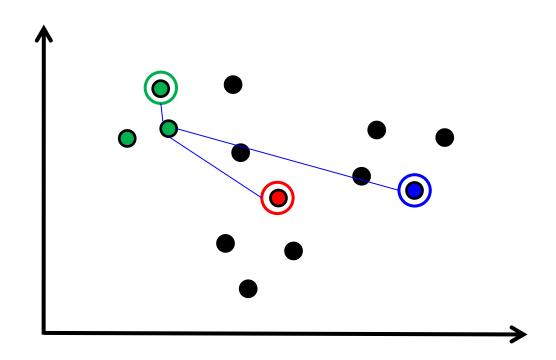
• Exemplo:

k = 3



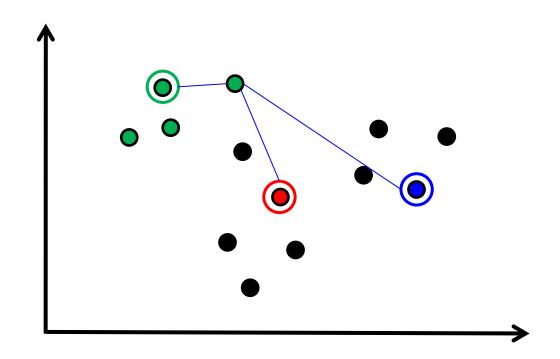
• Exemplo:

k = 3



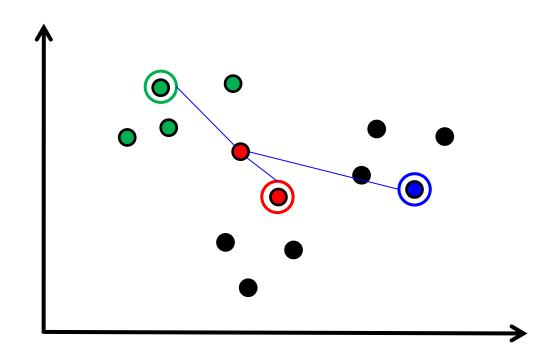
• Exemplo:

k = 3



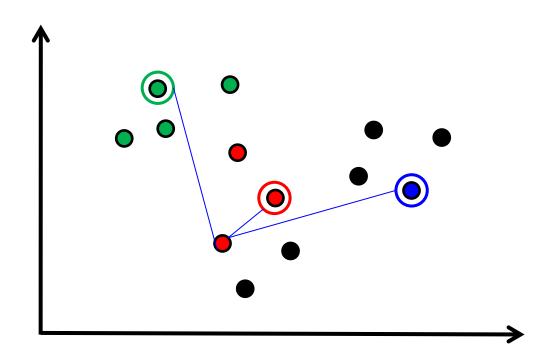
• Exemplo:

k = 3



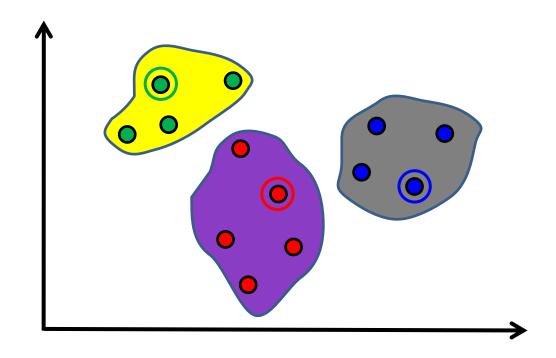
• Exemplo:

k = 3



• Exemplo:

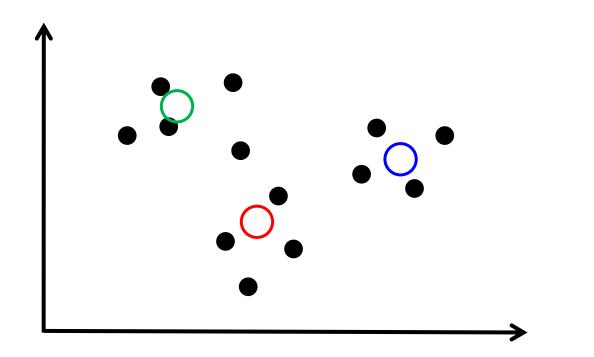
k = 3



n^a iteração

• Exemplo:

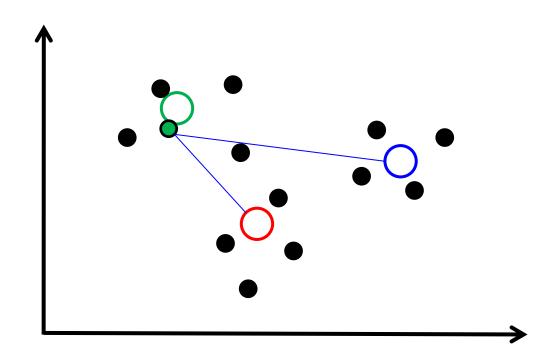
k = 3



Repite-se os passos anteriores até que os centróides não se movam mais.

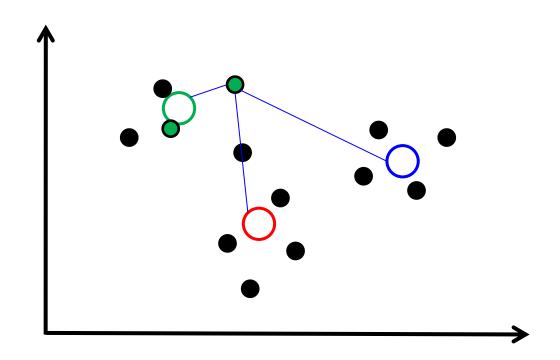
Exemplo:

k = 3



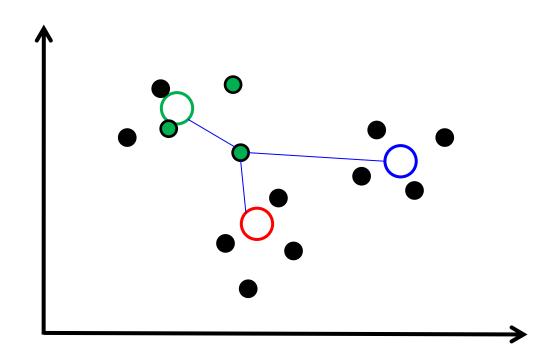
Exemplo:

k = 3



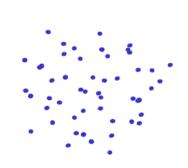
Exemplo:

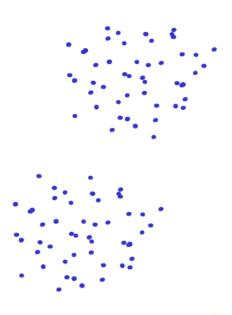
k = 3



Problemas do K-Means

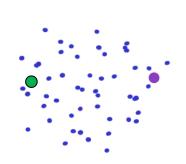
 O principal problema do K-Means é a dependência de uma boa inicialização.

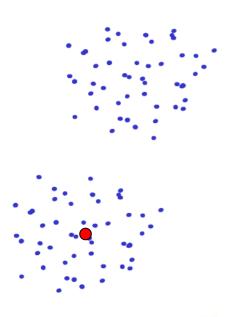




Problemas do K-Means

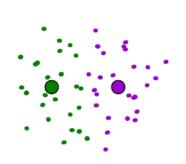
 O principal problema do K-Means é a dependência de uma boa inicialização.

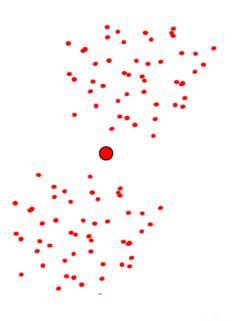




Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.





Aprendizado Não-Supervisionado

- O aprendizado não-supervisionado ou clusterização (agrupamento) busca extrair informação relevante de dados não rotulados.
- Existem vários algoritmos agrupamento de dados.
- Diferentes escolhas de atributos, medidas de proximidade, critérios de agrupamento e algoritmos de clusterização levam a resultados totalmente diferentes.

Leitura Complementar

 Mitchell, T. Machine Learning, McGraw-Hill Science/Engineering/Math, 1997.

• Duda, R., Hart, P., Stork, D., **Pattern Classification**, John Wiley & Sons, 2000

