INF 1771 - Inteligência Artificial

Aula 05 – Introdução à Lógica

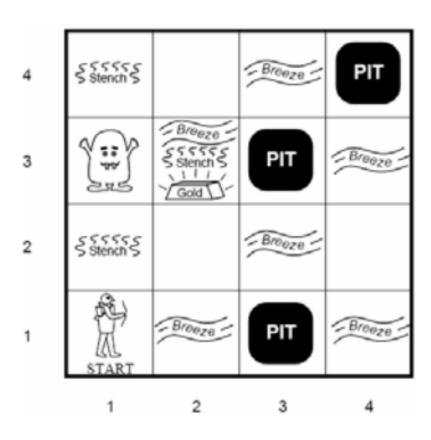
Edirlei Soares de Lima <elima@inf.puc-rio.br>

- Humanos possuem conhecimento e raciocinam sobre este conhecimento.
- Exemplo: "João jogou uma pedra na janela e a quebrou"
- Agentes baseados em conhecimento.

Agente Baseado em Conhecimento

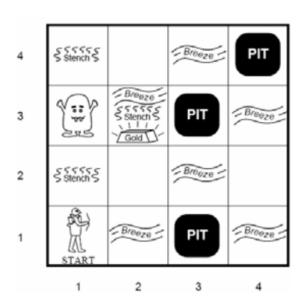
- O componente central de um agente baseado em conhecimento é sua base de conhecimento.
- A base de conhecimento é formada por um conjunto de sentenças expressadas através de uma linguagem lógica de representação de conhecimento.
- Deve ser possível adicionar novas sentenças à base e consultar o que se conhece. Ambas as tarefas podem envolver inferência (derivação de novas sentenças a partir de sentenças antigas).

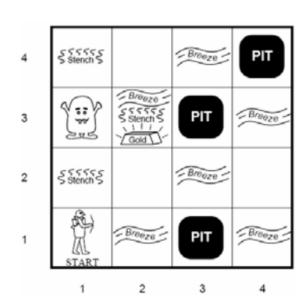
Agente Baseado em Conhecimento


- Processo de execução de um agente baseado em conhecimento:
 - (1) Informa a base de conhecimento o que o agente esta percebendo do ambiente;
 - (2) Pergunta a base de conhecimento qual a próxima ação que deve ser executada. Um extensivo processo de raciocínio lógico é realizada sobre a base de conhecimento para que sejam decididas as ações que devem ser executadas.
 - (3) Realiza a ação escolhida e informa a base de conhecimento sobre a ação que esta sendo realizada.

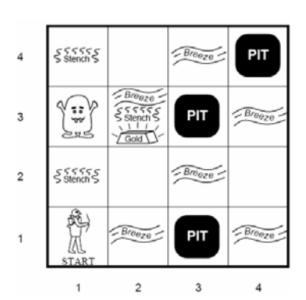
Agente Baseado em Conhecimento

- Porque utilizar uma linguagem lógica de representação de conhecimento?
 - Facilita a criação dos agentes. É possível dizer o que o agente sabe através de sentenças lógicas.
 - O agente pode adicionar novas sentenças a sua base de conhecimento enquanto ele explora o ambiente.
 - Abordagem declarativa de criação de sistemas.




O ambiente contém:

- Salas conectadas por passagens;
- Ouro em alguma sala;
- Poços sem fundo nos quais cairá qualquer um que passar pela sala, exceto o Wumpus;
- Wumpus: monstro que devora qualquer guerreiro que entrar em sua sala. O Wumpus pode ser morto pelo agente, mas o agente só tem uma flecha.


- Medida de desempenho: +1.000 por pegar ouro, -1.000 se cair em um poço ou for devorado pelo Wumpus, -1 para cada ação executada, -10 pelo uso da flecha.
- Ambiente: malha 4x4 de salas. O agente sempre começa no quadrado identificado como [1,1] voltado para a direita. As posições do Wumpus, ouro e poços são escolhidas aleatoriamente.
- Ações possíveis: O agente pode mover-se para frente, virar à esquerda, virar à direita, agarrar um objeto e atirar a flecha.

Sensores:

- Em quadrados adjacentes ao Wumpus, exceto diagonal, o agente sente o **fedor** do Wumpus;
- Em quadrados adjacentes a um poço, exceto diagonal, o agente sente uma **brisa**;
- Quadrados onde existe ouro o agente percebe o **brilho** do ouro;
- Ao caminhar contra uma parede o agente sente um impacto;
- Quando o Wumpus morre o agente ouve um grito;

Passo 1:

Sensores:

[nada, nada, nada, nada]

Conclusão:

[1,2] e [2,1] são seguros

Movimento escolhido:

[2,1]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ок			
1,1 A	2,1	3,1	4,1
ок	ок		

Passo 2:

Sensores:

[nada, brisa, nada, nada, nada]

Conclusão:

Há poço em [2,2], [3,1] ou ambos

Movimento escolhido:

[1,1] e depois [1,2]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

Passo 3:

Sensores:

[fedor, nada, nada, nada, nada]

Conclusão:

Há Wumpus em [1,3] ou [2,2] Wumpus não pode estar em [2,2] Wumpus em [1,3] Não existe poço em [2,2] Poço em [3,1]

[2,2] é seguro

Movimento escolhido:

[2,2]

1,4	2,4	3,4	4,4
4.0	2.2	2.2	4.2
^{1,3} w!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1	2,1 _P	3,1	4,1
','	2,1 B	3,1 P!	4,1
v	v		
ок	ок		

Lógica

- A base de conhecimento de um agente é formada por um conjunto de sentenças expressadas através de uma linguagem lógica de representação de conhecimento.
- O conceito de lógica foi organizado principalmente por Aristóteles. "É o conhecimento das formas gerais e regras gerais do pensamento correto e verdadeiro, independentemente dos conteúdos pensados"

"Todo homem é mortal"

"Sócrates é um homem"

"Logo, Sócrates é mortal"

Todo X é Y. Z é X. Portanto, Z é Y.

Tipos de Lógica

- Lógica proposicional: (ou lógica Booleana) lógica que representa a estrutura de sentenças usando conectivos como: "e", "ou" e "não".
- Lógica de predicados: lógica que representa a estrutura de sentenças usando conectivos como: "alguns", "todos" e "nenhum".
- Lógica multivalorada: estende os tradicionais valores verdadeiro/falso para incluir outros valores como "possível" ou um número infinito de "graus de verdade", representados, por exemplo, por um número real entre 0 e 1.
- Lógica modal: o estudo do comportamento dedutivo de expressões como: "é necessário que" e "é possível que".
- Lógica temporal: descreve qualquer sistema de regras e símbolos para representar e raciocinar sobre proposições qualificadas em termos do tempo.
- Lógica paraconsistente: lógica especializada no tratamento de bases de dados que contenham inconsistências.
- **8**

Conceitos Lógica

- Sintaxe: especifica todas as sentenças que são bem-formadas.
 - Exemplo na aritmética: "x+y=4", "x4y+=".
- Semântica: Especifica o significado das sentenças. A verdade de cada sentença com relação a cada "mundo possível".
 - Exemplo: a sentença "x+y=4" é verdadeira em um mundo no qual x=2 e y=2, mas é falsa em um mundo em que x=1 e y=1.

Conceitos Lógica

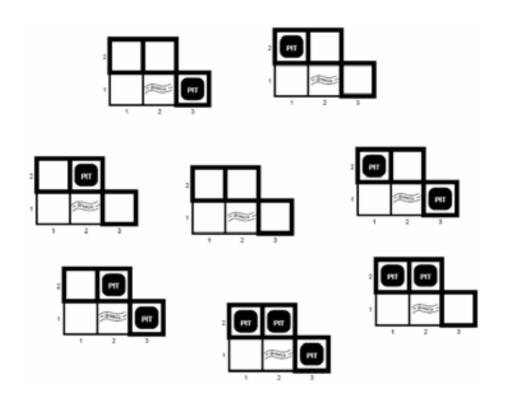
- Modelo: um "mundo possível". A frase "m é modelo de a" indica que a sentença a é verdadeira no modelo m.
- Consequência lógica: utilizada quando uma sentença decorre logicamente de outra. Notação: a ⊨ b (b decorre logicamente de a). Pode ser aplicada para derivar conclusões, ou seja, para conduzir inferência lógica

Base de conhecimento:

Nada em [1,1]; Brisa em [2,1]; Regras do mundo de Wumpus;

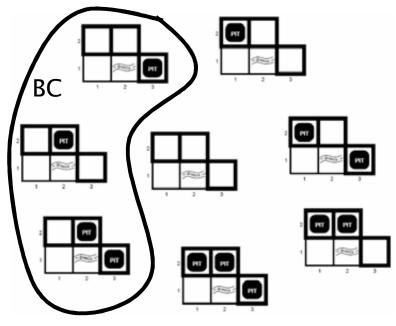
Interesse do agente:

Saber se os quadrados [1,2], [2,2] e [3,1] contém poços.

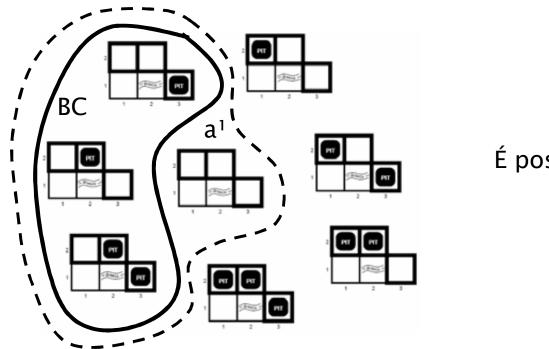

Possíveis modelos:

$$2^{3}=8$$

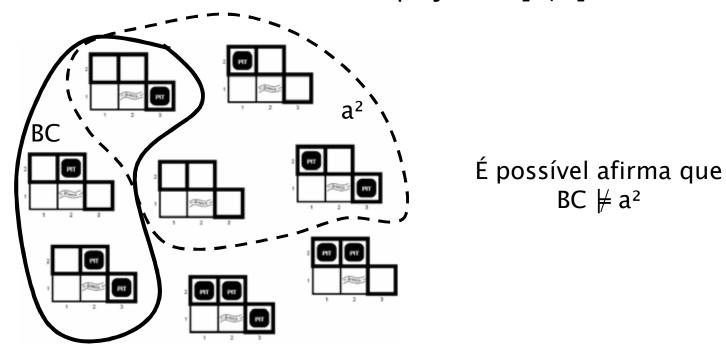
1,4	2,4	3,4	4,4
I			
l .			
1,3	2,3	3,3	4,3
l .			
l .			
1,2	2,2	3,2	4,2
1,2	P?	5,2	7,2
ı			
ок			
1,1	2,1 A	3,1 P?	4,1
l		P7	
v	В		
OK	ок		



Possíveis Modelos



A base de conhecimento (BC) é falsa em modelos que contradizem o que o agente sabe. Nesse caso, há apenas 3 modelos em que a base de conhecimento é verdadeira:


- Considerando a possível conclusão:
 - a¹ = "não existe nenhum poço em [1,2]"

É possível afirma que $BC \models a^1$

- Considerando a possível conclusão:
 - a² = "não existe nenhum poço em [2,2]"

Inferência Lógica

- O exemplo anterior:
 - Ilustra a consequência lógica.
 - Mostra como a conseqüência lógica pode ser aplicada para produzir inferência lógica (derivar conclusões).
 - O algoritmo ilustrado no exemplo se chama model checking. Ele numera todos os possíveis modelos para checar se a é verdade em todos os modelos onde BC é verdade.