
Programming Fundamentals

Edirlei Soares de Lima

<edirlei.lima@universidadeeuropeia.pt>

Lecture 05 – Loops and Images

Loop Statements

• You may encounter situations where a
block of code needs to be executed
several times.

• A loop statement allows us to execute a
statement or group of statements
multiple times.

• Lua loop statements: while, for, repeat

Loop Statements (while)

• The while consists of a block of code and a boolean condition.

• The condition is evaluated, and if it is true, the code within
the block is executed. This repeats until the condition
becomes false.

...

while boolean_condition do

-- block of code

end

...

While the “boolean condition” is true,
the “block of code” is executed.

When the condition becomes false, the
execution of the program continues to
the code that comes after the block of
code of the while.

Loop Statements – Example 1

• Examplo 1:

“Implement a program to
write all numbers between 0
and 100 on screen.”

local i = 0

while i <= 100 do

io.write(i, "\n")

i = i + 1

end

Loop Statements – Example 2

• Example 2: “Write a program to read 10 numbers and find their
sum and average”

local i = 0

local sum = 0

local avg = 0

io.write("Input the 10 numbers:\n");

while i < 10 do

local value = io.read()

sum = sum + value

i = i + 1

end

avg = sum / 10.0

io.write("The sum is: ", sum, "\n")

io.write("The Average is: ", avg, "\n")

Loop Statements (for)

• Another common loop statement is the for.
– It simplifies the implementation of loops that need to be executed a

specific number of times.

• The block of code will be executed for each value of var,
starting from initial_value and going to final_value,
using increment to increment/decrement the value of var.

...

for var = initial_value, final_value, increment do

-- block of code

end

...

Loop Statements – Example 1

• Example 1: “Write all numbers between 0 and 100 on screen.”

• Important:
– In the for statement, the control variable i is local variable;

– Never change the value of control variable manually;

local i = 0

while i <= 100 do

io.write(i, "\n")

i = i + 1

end

for i = 0, 100, 1 do

io.write(i, "\n")

end

Loop Statements – Example 2

• Example 2: “Write a program to read 10 numbers and find their
sum and average”

local sum = 0

local avg = 0

io.write("Input the 10 numbers:\n");

for i = 1, 10, 1 do

local value = io.read()

sum = sum + value

end

avg = sum / 10.0

io.write("The sum is: ", sum, "\n")

io.write("The Average is: ", avg, "\n")

Loop Statements (repeat)

• The while loop checks the condition before executing the
block of code. Thus, it is often known as a pre-test loop.

• Lua offers a third loop statement called repeat:
– The condition is evaluated after the execution of block of code.

– This means that the block of code will be executed at least once.

...

repeat

-- block of code

until boolean condition

...

Loop Statements – Example 1

• Example 1: “Write a program to read 10 numbers and find their
sum and average”

local i = 1

local sum = 0

local avg = 0

io.write("Input the 10 numbers:\n");

repeat

local value = io.read()

sum = sum + value

i = i + 1

until i > 10

avg = sum / 10.0

io.write("The sum is: ", sum, "\n")

io.write("The Average is: ", avg, "\n")

Back to the “Hello World”

• In the last version of the “Hello World”, we moved the text and
made it return to the initial position when it reaches the limit
of the screen.

• What if we need to do the same with 20 “Hello World’s” at the
same time?
– Duplicating code is never a good option!

• How can we do that?

local px -- position of the text in the x axis

function love.load()

love.graphics.setColor(0, 0, 0)

love.graphics.setBackgroundColor(1, 1, 1)

px = 0

end

function love.update(dt)

px = px + (100 * dt)

if px > love.graphics.getWidth() then

px = 0

end

end

function love.draw()

love.graphics.print("Hello World", px, 300)

end

local px -- position of the text in the x axis

function love.load()

love.graphics.setColor(0, 0, 0)

love.graphics.setBackgroundColor(1, 1, 1)

px = 0

end

function love.update(dt)

px = px + (100 * dt)

if px > love.graphics.getWidth() then

px = 0

end

end

function love.draw()

for y = 0, 20, 1 do

love.graphics.print("Hello World", px, y * 30)

end

end

Back to the “Hello World”

Image Type

• Games are not created using only geometric shapes. Usually
2D games use images to represent characters, objects and
environments.

• Löve offers a especial data type called image.

• We can load a new image using the function:

• We can draw an image using the function:

image = love.graphics.newImage(filename)

love.graphics.draw(drawable, x, y, r, sx, sy, ox, oy, kx, ky)

Image Type

• To draw an image on screen, two steps are required:
– Load the image with the function love.graphics.newImage

– Draw the image with the function love.graphics.draw

• Example:

function love.load()

hamster = love.graphics.newImage("hamster.png")

end

function love.draw()

love.graphics.draw(hamster, 325, 225)

end

http://www.inf.puc-rio.br/~elima/intro-eng/hamster.png

http://www.inf.puc-rio.br/~elima/intro-eng/hamster.png

Image Type

Image Type

• By default, images are drawn with the origin located at the
top left corner:

• Is possible to change the origin point with some addicional
parameters of the love.graphics.draw function.

Image Type

• The function love.graphics.draw has several optional
parameters:

– drawable: image or other object that can be drawn on screen;

– x: position to draw the object (x-axis);

– y: position to draw the object (y-axis);

– r: orientation of the object (radians).

– sx: scale factor (x-axis);

– sy: scale factor (y-axis);

– ox: origin offset (x-axis);

– oy: origin offset (y-axis);

– kx: shearing factor (x-axis).

– ky: shearing factor (y-axis).

love.graphics.draw(drawable, x, y, r, sx, sy, ox, oy, kx, ky)

What is shearing fator?

Image Type

• Example:

function love.load()

hamster = love.graphics.newImage("hamster.png")

end

function love.draw()

love.graphics.draw(hamster, 400, 300, math.rad(90), 1, 1,

hamster:getWidth()/2, hamster:getHeight()/2)

end

Notice that we can get the width and height of an image
with the functions hamster:getWidth() and
hamster:getHeight()

Exercise 1

1) Write a program to draw a scene like the one illustrated
bellow:

Images: http://www.inf.puc-rio.br/~elima/intro-eng/imagens_cenario.zip

Important: you need to use loop statements
to drawn the images that are repeated
several time (ground and mountains).

http://www.inf.puc-rio.br/~elima/intro-eng/imagens_cenario.zip

