Programming Fundamentals

Lecture 02 — Introduction to Lua

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

Lua Programming Language

Lua is a powerful, efficient, lightweight,
embeddable scripting language.

— It supports procedural programming, object-oriented
programming, functional programming, ...

In video game development, Lua is one of the most
popular scripting language for game programming.

— Some games that use Lua: World of Warcraft, Civilization
V, Far Cry, Angry Birds, Grim Fandango, Dota 2, ...

Lua is designed, implemented, and maintained by
a team of researchers at PUC-Rio in Brazil.

Why choose Lua?

* Luais a proven, robust language:

— Has been used in many industrial applications (e.g.: Adobe's Photoshop
Lightroom) and games (e.g.: World of Warcraft and Angry Birds).

— Is the leading scripting language in games and won the Front Line
Award 2011 from the Game Developers Magazine.

— Has a solid reference manual and several books.

e Luais fast:

— Lua has a deserved reputation for performance. Several benchmarks
show Lua as the fastest language in the realm of interpreted scripting
languages.

Why choose Lua?

* Luais portable:

— is distributed in a small package and builds out-of-the-box in all
platforms that have a standard C compiler.

— Lua runs on Unix, Windows, mobile devices (Android, iOS, BREW,
Symbian, Windows Phone), on embedded microprocessors, etc.

 Luais embeddable:

— Lua can be easily embedded into other applications. Lua API allows
strong and easy integration with code written in other languages.

e Luais free:

— Lua is a free open-source software that can be used for any purpose,
including commercial purposes, at absolutely no cost.

Example of Code in Lua

local cels
local fahr

10.write ("Temperature in Celsius: ")
cels = i1o.read()

fahr = 1.8 * cels + 32

io.write ("Temperature in Fahrenheit: ", fahr, "\n")

Variables and Constants

e Variables and constants are the basic elements
manipulated by a program.

* Constant is a fixed value that doesn’t change during
the execution of a program.

Gradel + Grade?2

FinalGrade = @\
Contant value

Variables

e Variable is a space in the memory of the computer that is
reserved to store a specific type of data.

— Containers where we can store information (numbers, text, etc.)

e Variables have names so they can be referenced in the code
and have their values accessed or changed when necessary.

Variable Gradel Variable Grade2
: Grade Grade?2
_FinalGrade

2

Variable FinalGrade

Variables

 The content of a variable can change during the execution of a
program.

* Although different values can be assigned to the same variable,
it can only store one value at a time.

118.0”
Gradel ¥(Grade?2

2

117.5))

FinalGrade

“7.75”

Variables

Variables have:
— Name: used to refer to the variable in the code;

* Name restrictions: is not allowed to start the name of variable with a number (0-9),
some special characters are not allowed in the names (*, -, /, +, ...), and some
reserved word can not be used as well (if, for, while, ...).

— Type: defines the set of values that can be stored in the variable;
— Value: the value stored;

Variables must be:
— Declared: What is the name and what is the type of the variable?
— Initialized: What is the initial value of the variable?

Variables in Lua

* Luais a dynamically typed language. This means that when a
variable is declared, its type doesn’t need to be specified.

— There are no type definitions in Lua;

— Each value carries its own type.

Type Examples of Values
number 0,1, 23, -2.3
string “hi”, “hello world”, “test 1237, *
boolean true, false
function 0x1234567
table 0x2345678
thread 0x3456789
userdata 0x4567890
nil nil

Declaring Variables in Lua

* Local variables must be explicitly declared;
* More than one variable can be declared at a time;
e Variables can be used without being declared (global variables);

Examples:
local a —— declares a local variable called a
local Db —— declares a local variable called b
local d, e -- declares two local variables (a and b)
local d = 5 —-- declares and i1nitializes the variable d

f = 10 —-— 1nitializes a global variable £

Arithmetic Operators

Arithmetic Operators are used to perform arithmetic
operations with variables and constants.

Operation Symbol
Addition +
Subtraction -
Multiplication *
Division /

Remainder or modulus

Exponentiation

Examples: assignment operator

total = price * quantity
final_grade = (gradel + grade2)/2
result=3*(1-2)+4*2
res=4%2

res=b "2

Input and Output Functions

* Function “write” of the “i0o” module: is used to write
data to the output console.

io.write(constants/variables/expressions...)

io.write (33)

Output:
33

local myVar = 5
io.write("Value = ", 33, " Total =", 33 + 40, " Var = ", myVar)

Output:
Valor = 33 Total = 73 Var = 5

Input and Output Functions

* Text output:

io.write ("Programming Fundamentals\nwith Lua")

Output:
Programming Fundamentals

with Lua

Input and Output Functions

 Function “read” of the “io” module: is used to read data from
the console (keyboard input).

io.read ()

local n
n = 1o.read/()
The value typed by the user is stored in the variable n

* Important: the input value is always a string (text).
Sometimes you need to convert the value to a number type
with the function tonumber:

local n

n = tonumber (io.read())

Example 1

* Problem: read two numbers and show the sum of the numbers.

local numberl, number?2, result

io.write ("First number: ")
numberl = i1o.read()

io.write ("Second number: ")

In this case, we don’t need to
convert the values to numbers
because arithmetic operators
automatically convert them.

number?2 = io,read()/

result = numberl + number?2?

io.write ("The sum 1is ", result)

Lua Programming - Example

e Comments:

-— Program to convert temperatures from Celsius to Fahrenheit

local cels -— variable to store the temperature in Celsius
local fahr -— varlable to store the temperature in Fahrenheit

io.write ("Temperature in Celsius: ")
cels = 1o.read() —-—- read the temperature in Celsius

fahr = 1.8 * cels + 32 —-- convert from Celsius to Fahrenheit

—-- Show the temperature in Fahrenheit
io.write ("Temperature in Fahrenheit: ", fahr, "\n")

1)

2)

3)

4)

Exercises

Write a program that converts kilometers per hour to miles
per hour (1 km/h is equal t0 0.6213711922 mi/h).

Write a program that calculates the perimeter of a rectangle
(P = 2(lenght + width)).

Write a program that takes hours and minutes as input, and
calculates the total number of minutes.

Write a program that takes minutes as input, and display the
total number of hours and minutes.

Functions

e A functionis a block of code with a name that can be executed
at other points in the code.

— It may have parameters i | z § | l
— It may return a result

}uL .AIJL

flxy)=xy? SJy)=x2+y?

* Functions are important to:
— Simplify and organize the code (modularization);

— Avoid repetitions of code;
— Extend the programming language;
— Once declared, we can just use them (abstraction)

Functions in Lua

A Lua program cannot have two
functions with the same name.

function function name (parameterl, parameter2)+«——

local wvariables

Lua instructions

return .
If a function doesn’t have

end parameters, we just use: ()

Block of code

Functions in Lua — Example

function celsius fahrenheit (tc)
local £
f=1.8 * tc + 32
return f

end

local cels, fahr

10.write ("Temperatura in Celsius: ")
cels = 1o.read()

fahr = celsius fahrenheit (cels)

io.write ("Temperature in Fahrenheit: ", fahr)

We can use the function “celsius_fahrenheit” in any other
program where this conversion may be needed.

Parameters and Return Values

Example:

function celsius fahrenheit (tc)

Only one input parameter.

Example of function with two parameters:

function volume cylinder (x, h)

local v
v = math.pi *
return v

end

(r ~ 2)

*

h

Two input parameters

Parameters and Return Values

function volume cylinder (r, h)
local v
v = math.pi * (r ~ 2) * h
return v

end

local radius, height, volume

i1o0.write("Radius of the cylinder:

radius = 1o.read|()

10.write ("Height of the cylinder:

height = i1o.read()

")

")

volume = volume cylinder (radius, height)

io.write("Volume of the cylinder:

", volume)

Scope of Variables

The scope of a variable is the region of the program where the
variable is valid/exist.

A variable declared inside the block of code of a function with
the keyword “local” is a local variable:

— The variable is only valid inside the block of code of the function
where it was declared.

— When the execution of the function ends, the memory area reserved
to store local variables is automatically released, so the program can
no longer access those variables.

Scope of Variables

 Local variable:

— A function can be executed multiple times.

* For each execution, new memory areas for local variables are
automatically reserved. When the function ends, the memory is
automatically released.

— Local variables declared inside the block of code of a
function are not valid in other functions.

— The parameters of a function are also local variables that
are only valid in the block of code of the function.

Scope of Variables

function volume cylinder (radius, height)

local volume =

volume = math.pi * (ra?ius N 2) * height+—

return volume
end

Variables with the same
name, but with different
scopes.

local radius, height, volume <
io.write("Radius of the cylinder: ")
radius = 1o.read()
10.write ("Height of the cylinder: ")
height = i1o.read()

volume = volume cylinder (radius, height)

io.write("Volume of the cylinder: ", volume)

Scope of Variables

* Functions receive values as parameters and return values (not variables).

* The name of the variables may be the same, but they are different
variables.

function doble value (x)
X =X * 2
return x

end

local x = 5.0 / Output: 10.0
lo.write (doble value (x))

lo.write (x) $~§_§-§~§~

Output: 5.0

Exercises

1) Rewrite the first exercises using functions:

a) Write a program that converts kilometers per hour to miles per hour
(1 km/h is equal to 0.6213711922 mi/h).

b) Write a program that calculates the perimeter of a rectangle (P =
2(lenght + width)).

c) Write a program that takes hours and minutes as input, and
calculates the total number of minutes.

d) Write a program that takes minutes as input, and display the total
number of hours and minutes.

Extra Exercises: http://www.inf.puc-rio.br/~elima/gameprog/ExtraExercisesLua.pdf (optional)

http://www.inf.puc-rio.br/~elima/gameprog/ExtraExercisesLua.pdf

