
Programming Fundamentals

Edirlei Soares de Lima

<edirlei.lima@universidadeeuropeia.pt>

Lecture 02 – Introduction to Lua

Lua Programming Language

• Lua is a powerful, efficient, lightweight,
embeddable scripting language.
– It supports procedural programming, object-oriented

programming, functional programming, ...

• In video game development, Lua is one of the most
popular scripting language for game programming.
– Some games that use Lua: World of Warcraft, Civilization

V, Far Cry, Angry Birds, Grim Fandango, Dota 2, ...

• Lua is designed, implemented, and maintained by
a team of researchers at PUC-Rio in Brazil.

Why choose Lua?

• Lua is a proven, robust language:
– Has been used in many industrial applications (e.g.: Adobe's Photoshop

Lightroom) and games (e.g.: World of Warcraft and Angry Birds).

– Is the leading scripting language in games and won the Front Line
Award 2011 from the Game Developers Magazine.

– Has a solid reference manual and several books.

• Lua is fast:
– Lua has a deserved reputation for performance. Several benchmarks

show Lua as the fastest language in the realm of interpreted scripting
languages.

Why choose Lua?

• Lua is portable:
– is distributed in a small package and builds out-of-the-box in all

platforms that have a standard C compiler.

– Lua runs on Unix, Windows, mobile devices (Android, iOS, BREW,
Symbian, Windows Phone), on embedded microprocessors, etc.

• Lua is embeddable:
– Lua can be easily embedded into other applications. Lua API allows

strong and easy integration with code written in other languages.

• Lua is free:
– Lua is a free open-source software that can be used for any purpose,

including commercial purposes, at absolutely no cost.

Example of Code in Lua

local cels

local fahr

io.write("Temperature in Celsius: ")

cels = io.read()

fahr = 1.8 * cels + 32

io.write("Temperature in Fahrenheit: ", fahr, "\n")

Variables and Constants

• Variables and constants are the basic elements
manipulated by a program.

• Constant is a fixed value that doesn’t change during
the execution of a program.

𝐹𝑖𝑛𝑎𝑙𝐺𝑟𝑎𝑑𝑒 =
𝐺𝑟𝑎𝑑𝑒1 + 𝐺𝑟𝑎𝑑𝑒2

2
Contant value

𝐹𝑖𝑛𝑎𝑙𝐺𝑟𝑎𝑑𝑒 =
𝐺𝑟𝑎𝑑𝑒1 + 𝐺𝑟𝑎𝑑𝑒2

2

Variables

• Variable is a space in the memory of the computer that is
reserved to store a specific type of data.

– Containers where we can store information (numbers, text, etc.)

• Variables have names so they can be referenced in the code
and have their values accessed or changed when necessary.

Variable Grade1 Variable Grade2

Variable FinalGrade

𝐹𝑖𝑛𝑎𝑙𝐺𝑟𝑎𝑑𝑒 =
𝐺𝑟𝑎𝑑𝑒1 + 𝐺𝑟𝑎𝑑𝑒2

2

Variables

• The content of a variable can change during the execution of a
program.

• Although different values can be assigned to the same variable,
it can only store one value at a time.

“7.5” “8.0”

“7.75”

Variables
• Variables have:

– Name: used to refer to the variable in the code;
• Name restrictions: is not allowed to start the name of variable with a number (0-9),

some special characters are not allowed in the names (*, -, /, +, ...), and some
reserved word can not be used as well (if, for, while, ...).

– Type: defines the set of values that can be stored in the variable;

– Value: the value stored;

• Variables must be:
– Declared: What is the name and what is the type of the variable?

– Initialized: What is the initial value of the variable?

Variables in Lua

• Lua is a dynamically typed language. This means that when a
variable is declared, its type doesn’t need to be specified.
– There are no type definitions in Lua;

– Each value carries its own type.

Type Examples of Values

number 0, 1, 2.3, -2.3

string “hi”, “hello world”, “test 123”, “”

boolean true, false

function 0x1234567

table 0x2345678

thread 0x3456789

userdata 0x4567890

nil nil

Declaring Variables in Lua

• Local variables must be explicitly declared;

• More than one variable can be declared at a time;

• Variables can be used without being declared (global variables);

Examples:

local a -- declares a local variable called a

local b -- declares a local variable called b

local d, e -- declares two local variables (a and b)

local d = 5 -- declares and initializes the variable d

f = 10 -- initializes a global variable f

Arithmetic Operators

• Arithmetic Operators are used to perform arithmetic
operations with variables and constants.

Operation Symbol

Addition +

Subtraction -

Multiplication *

Division /

Remainder or modulus %

Exponentiation ^

Examples:

total = price * quantity

final_grade = (grade1 + grade2)/2

result = 3 * (1 - 2) + 4 * 2

res = 4 % 2

res = b ^ 2

assignment operator

Input and Output Functions

• Function “write” of the “io” module: is used to write
data to the output console.

io.write(33)

Output:

33

io.write(constants/variables/expressions...)

local myVar = 5

io.write("Value = ", 33, " Total = ", 33 + 40, " Var = ", myVar)

Output:

Valor = 33 Total = 73 Var = 5

Input and Output Functions

• Text output:

io.write("Programming Fundamentals\nwith Lua")

Output:

Programming Fundamentals

with Lua

Input and Output Functions

• Function “read” of the “io” module: is used to read data from
the console (keyboard input).

• Important: the input value is always a string (text).
Sometimes you need to convert the value to a number type
with the function tonumber:

local n

n = io.read()

The value typed by the user is stored in the variable n

io.read()

local n

n = tonumber(io.read())

Example 1

• Problem: read two numbers and show the sum of the numbers.

local number1, number2, result

io.write("First number: ")

number1 = io.read()

io.write("Second number: ")

number2 = io.read()

result = number1 + number2

io.write("The sum is ", result)

In this case, we don’t need to
convert the values to numbers
because arithmetic operators
automatically convert them.

Lua Programming - Example

• Comments:
-- Program to convert temperatures from Celsius to Fahrenheit

local cels -- variable to store the temperature in Celsius

local fahr -- variable to store the temperature in Fahrenheit

io.write("Temperature in Celsius: ")

cels = io.read() -- read the temperature in Celsius

fahr = 1.8 * cels + 32 -- convert from Celsius to Fahrenheit

-- Show the temperature in Fahrenheit

io.write("Temperature in Fahrenheit: ", fahr, "\n")

Exercises

1) Write a program that converts kilometers per hour to miles
per hour (1 km/h is equal to 0.6213711922 mi/h).

2) Write a program that calculates the perimeter of a rectangle
(𝑃 = 2 𝑙𝑒𝑛𝑔ℎ𝑡 + 𝑤𝑖𝑑𝑡ℎ).

3) Write a program that takes hours and minutes as input, and
calculates the total number of minutes.

4) Write a program that takes minutes as input, and display the
total number of hours and minutes.

Functions

• A function is a block of code with a name that can be executed
at other points in the code.
– It may have parameters

– It may return a result

• Functions are important to:
– Simplify and organize the code (modularization);

– Avoid repetitions of code;

– Extend the programming language;

– Once declared, we can just use them (abstraction)

Functions in Lua

function function_name(parameter1, parameter2)

local variables

Lua instructions

return

end

A Lua program cannot have two

functions with the same name.

If a function doesn’t have

parameters, we just use: ()

Block of code

Functions in Lua – Example

function celsius_fahrenheit(tc)

local f

f = 1.8 * tc + 32

return f

end

local cels, fahr

io.write("Temperatura in Celsius: ")

cels = io.read()

fahr = celsius_fahrenheit(cels)

io.write("Temperature in Fahrenheit: ", fahr)

We can use the function “celsius_fahrenheit” in any other
program where this conversion may be needed.

Parameters and Return Values

• Example:

• Example of function with two parameters:

function celsius_fahrenheit(tc)

Only one input parameter.

function volume_cylinder(r, h)

local v

v = math.pi * (r ^ 2) * h

return v

end

Two input parameters

Parameters and Return Values

function volume_cylinder(r, h)

local v

v = math.pi * (r ^ 2) * h

return v

end

local radius, height, volume

io.write("Radius of the cylinder: ")

radius = io.read()

io.write("Height of the cylinder: ")

height = io.read()

volume = volume_cylinder(radius, height)

io.write("Volume of the cylinder: ", volume)

Scope of Variables

• The scope of a variable is the region of the program where the
variable is valid/exist.

• A variable declared inside the block of code of a function with
the keyword “local” is a local variable:

– The variable is only valid inside the block of code of the function
where it was declared.

– When the execution of the function ends, the memory area reserved
to store local variables is automatically released, so the program can
no longer access those variables.

Scope of Variables

• Local variable:
– A function can be executed multiple times.

• For each execution, new memory areas for local variables are
automatically reserved. When the function ends, the memory is
automatically released.

– Local variables declared inside the block of code of a
function are not valid in other functions.

– The parameters of a function are also local variables that
are only valid in the block of code of the function.

function volume_cylinder(radius, height)

local volume

volume = math.pi * (radius ^ 2) * height

return volume

end

local radius, height, volume

io.write("Radius of the cylinder: ")

radius = io.read()

io.write("Height of the cylinder: ")

height = io.read()

volume = volume_cylinder(radius, height)

io.write("Volume of the cylinder: ", volume)

Variables with the same
name, but with different
scopes.

Scope of Variables

Scope of Variables

• Functions receive values as parameters and return values (not variables).

• The name of the variables may be the same, but they are different
variables.

function doble_value(x)

x = x * 2

return x

end

local x = 5.0

io.write(doble_value(x))

io.write(x)

Output: 10.0

Output: 5.0

Exercises

1) Rewrite the first exercises using functions:
a) Write a program that converts kilometers per hour to miles per hour

(1 km/h is equal to 0.6213711922 mi/h).

b) Write a program that calculates the perimeter of a rectangle (𝑃 =
2 𝑙𝑒𝑛𝑔ℎ𝑡 + 𝑤𝑖𝑑𝑡ℎ).

c) Write a program that takes hours and minutes as input, and
calculates the total number of minutes.

d) Write a program that takes minutes as input, and display the total
number of hours and minutes.

Extra Exercises: http://www.inf.puc-rio.br/~elima/gameprog/ExtraExercisesLua.pdf (optional)

http://www.inf.puc-rio.br/~elima/gameprog/ExtraExercisesLua.pdf

