Programming Fundamentals

Lecture 03 — Introduction to Love 2D

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>



Computer Graphics Concepts

* What is a pixel?

— In digital imaging, a pixel is a single square

or rectangle point in a raster image (or the D
smallest addressable element in a display
device).
-
— Pixels are placed in a grid-like fashion and " r 7 "
together they draw images on screen. I- :. :. -I
— The location of a pixel is usually referred o '1:."' o
by its position x on the horizontal axis and ':'1‘.._,_ -
y on the vertical axis of the grid (pixel
coordinates).




Computer Graphics Concepts

In computer graphics, colors are generally defined by the
intensity (chromaticity) of three additive primaries color (or
channels): red, green, and blue.

RGB Scale:
R G B
255 B G SEEEEEEEEE Y More Intensity
(0 [T AURUSI, A— X... Less Intensity

Don’t know the RGB value of the

color that you want?
Important: the RBG scale used http://doc.instantreality.org/tools/c

by Love is between 0 and 1. olor_calculator/



http://doc.instantreality.org/tools/color_calculator/

Computer Graphics Concepts

Computer graphics uses coordinate systems to represent

positions on a virtual scene. Vs
+6
Yoo . JB(65)
There are usually: aesa, 1} i
— 2 axis to define a 2D space (x and y); T2
______ -1 |
— 3 axis to define a 3D space (X, Y, and z); <+ttt A G mpmpt—t—> _
1 1 2 3 4:5 6 X
: |
. . 34 |
Warning: different tools/frameworks DY Shb kb ® daks35)
54+
6

use different coordinate systems

— 1 unit = 1 pixel / arbitrary scene units;

— Origin at the top left / origin at the
center / origin at the bottom left;

— y goes up /y goes down;



Love 2D Coordinate System

200 800

(200,100)

600




“Hello World” in Love

function love.draw ()
love.graphics.print ("Hello World", 360, 300)

A

end

The function 1love.graphics.print
is used to draw a text on screen. The last
two parameters represent the position (x
and y) where the text will be drawn.




Programming in Love

Programming in Love involves the implementation of callback
functions. A callback is a function that you code and Love
automatically calls at certain times.

Example:

love.draw ()

— The callback 1ove.draw is called continuously to draw all
the graphical elements (images, geometric shapes, text,
etc.) on the screen every frame.



Love Callbacks

Love has several callbacks to perform various tasks (all of them
are optional):

— Initialization, rendering, update, user input keyboard/mouse/joystick, ...

A fully-featured game experience would probably utilize nearly
all of Love callbacks, so it's wise to know what they are.
— List of Love callbacks: https://www.love2d.org/wiki/Category:Callbacks

More common callbacks:
— love.load()

— love.draw()

— love.update(dt)


https://www.love2d.org/wiki/Category:Callbacks

Callback 1ove.load ()

* The callback 1ove.load ()is called exactly once at the
beginning of the game.

* |s usually used to:
— Load resources (images, audio, etc.)
— Initialize variables
— Set specific settings

function love.load ()
image = love.graphics.newlImage ("cake.jpg")
love.graphics.setColor (0, 0, 0)
love.graphics.setNewFont (12)
love.graphics.setBackgroundColor (255, 255, 2505)
end



Back to the “Hello World”

function love.load ()

love.graphics.setColor (0, 0, 0) <

love.graphics.setBackgroundColor (1, 1, 1) *
end

function love.draw ()
love.graphics.print ("Hello World", 360, 300)
end

The function 1love.graphics.setColor
defines the color used to drawn things on
screen (RGB model)

\\\\\\\\\\

The function 1love.graphics.
setBackgroundColor defines the
background color (RGB model)




Callback 1ove.update (dt)

 The callback 1love.update (dt) is called continuously while

the game is running (every frame). The parameter 'dt' stands for
"delta time" and it represents amount of seconds since the last
time this function was called (usually a small value like 0.02571).

Is usually used to:

— Implementation of the game logic

P & & Calculates the value of px at a
— Physics simulations constant rate (independently of the
— Artificial intelligence computations speed of the computer)

function love.update (dt)
px = px + (100 * dt) <
end




Back to the “Hello World”

local px —-— position of the text in the x axis

function love.load()
love.graphics.setColor (0, 0, 0)
love.graphics.setBackgroundColor (1, 1, 1)
px = 0

end

function love.update (dt)
px = px + (100 * dt)
end

function love.draw ()
love.graphics.print ("Hello World", px, 300)
end



LOove Modules

* Love comprises several modules:

— Every module has a set of functions and data types that can be used
for game programming.

— All modules are contained in a global module called 1ove.

 Example of module: 1ove.graphics

— In the previous examples we used some functions from the
love.graphics module.

— The function love.graphics.print is part of the
love.graphics module.

e List of Love modules: https://love2d.org/wiki/love



https://love2d.org/wiki/love

Module love.graphics

The 1love.graphics module contain functions dedicated for
graphical operations:

— Draw lines, geometric shapes, text, images, etc.

— Load external files (images, fonts, etc.) into memory.

— Create special objects (particle system, canvas, etc.)

— Manipulate the screen

A complete list of functions of the 1ove.graphics module is
available at: https://love2d.org/wiki/love.graphics



https://love2d.org/wiki/love.graphics

Module love.graphics

* Drawing basic geometric shapes:

— Rectangle:

love.graphics.rectangle (mode, x, y, width, height)
Example:

love.graphics.rectangle("fi11", 300, 250, 200, 100)

T

mode: “fill” to draw the shape filled
or “line” to draw just an outline.




Module love.graphics

* Drawing basic geometric shapes:

— Circle:

love.graphics.circle (mode, x, y, radius, segments)
Example:

love.graphics.circle("£111", 400, 300, 50, 100)

T

Number of segments used for
drawing the circle




Module love.graphics

* Drawing basic geometric shapes:

— Line:
love.graphics.line(x1, vy1, x2, vy2, ...)
Example:

love.graphics.line (300, 300, 500, 300)

T

More points are accepted as
parameters.




Module love.graphics

* Drawing basic geometric shapes:

— Polygon:

love.graphics.polygon (mode, ...)
Example:

love.graphics.polygon("f111", 350, 300, 450, 300, 400, 200)

!

More points are accepted as
parameters.




Module love.graphics

* Drawing basic geometric shapes:

— Changing the color of the geometric shapes:
love.graphics.setColor (red, green, blue, alpha)

Example:

love.graphics.setColor (0, 1, 0)
love.graphics.rectangle("fi11", 300, 250, 200, 100)

The alpha is optional and can be used
to define colors with transparency.




Geometric Shapes - Example

function love.draw ()

end

—-— draw a rectangle
love.graphics.setColor (0, 0.521, 0)
love.graphics.rectangle("£f111", 100, 100, 600, 400)

—-— draw a polygon
love.graphics.setColor (0.988, 0.988, 0)
love.graphics.polygon("f111", 120, 300, 400, 120,

680, 300, 400, 480)

—-— draw a circle
love.graphics.setColor (0, 0, 0.552)
love.graphics.circle("£fi11", 400, 300, 120, 100)



Geometric Shapes - Example




Exercise 1

1) Using basic geometric shapes (lines, rectangles, circles, and
polygons), implement a program to draw a scene similar to the
one illustrated below:

Hints:

e Start simple and add one
element at a time.

e Test after adding each
element.

Extra challenge:
* Draw a character in the
scene using basic shapes:




Exercise 2

Rewrite the code of the last exercise using functions. Create
one function for each of the elements of the scene and try to

make them parameterized.

— Example:

function DrawTree (x, y, height)
love.graphics.setColor (0.5, 0.2, 0)
love.graphics.rectangle("fill", x - 20, y - height, 40, height)
love.graphics.setColor (0.2, 0.6, 0)
love.graphics.circle("£f111", x, y - height, 80)

end

function love.draw ()
DrawTree (200, 500, 200)
DrawTree (400, 500, 300)
DrawTree (600, 500, 250)

end




