
Artificial Intelligence

Edirlei Soares de Lima

<edirlei.slima@gmail.com>

Lecture 08 – Behavior Trees

Game AI – Model

• Pathfinding

• Steering behaviours

• Finite state machines

• Automated planning

• Behaviour trees

• Randomness

• Sensor systems

• Machine learning

Decision Making

• In game AI, decision making is the ability
of a character/agent to decide what to
do.

• The agent processes a set of information
that it uses to generate an action that it
wants to carry out.
– Input: agent’s knowledge about the world;

– Output: an action request;

Decision Making

• The knowledge can be broken down into external and
internal knowledge.
– External knowledge: information about the game environment (e.g.

characters’ positions, level layout, noise direction).

– Internal knowledge: information about the character’s internal state
(e.g. health, goals, last actions).

Behavior Tree

• Behavior trees have a lot in common with Hierarchical State
Machines but, instead of a state, the main building block of a
behavior tree is a task.
– A task can be something as simple as looking up the value of a variable

in the game state, or executing an animation.

– Tasks can be composed into sub-trees to represent more complex
actions.

Behavior Tree – Tasks

• Behavior trees are composed of three
types of tasks:
– Conditions: test some property of the game

(e.g. proximity, line of sight, state of the
character).

– Actions: alter the state of the game (e.g.
animation, movement, state change, dialog).

– Composites: Selector and Sequence.
• Selector: returns immediately with a success status

code when one of its children runs successfully.

• Sequence: returns immediately with a failure status
code when one of its children fails. As long as its
children are succeeding, it will keep going.

Selector

Actions
Sequence

Condition Actions

Behavior Tree – Example

Agent

-behaviorTree: Task;
-wordManager: WorldManager;

-Start();
-Update();

Task

-children: Task[];
+status: TaskStatus;

+abstract Run(agent, manager): TaskStatus;

Sequence

+Run(agent, manager): TaskStatus;

Unity Implementation – Class Diagram

Selector

+Run(agent, manager): TaskStatus;

Actions & Conditions

+Run(agent, manager): TaskStatus;

WorldManager

-doors: DoorInfo[];
-waypoints: WaypointInfo[];

+OpenDoor(name);
+CloseDoor(name);
+DoorIsOpen(name): bool;
+GetWaypoint(name): Vector3;

TaskStatus

None
Success
Failure
Running

Base Task Class

• Task Class:

public abstract class Task

{

protected List<Task> children;

public TaskStatus status;

public abstract TaskStatus Run(Agent agent,

WorldManager wordManager);

public Task(){

children = new List<Task>();

status = TaskStatus.None;

}

public void AddChildren(Task task){

children.Add(task);

}

}

Composite Classes

• Sequence Class:

public class Sequence : Task {

public override TaskStatus Run(Agent agent,

WorldManager wordManager){

int successCount = 0;

foreach (Task task in children){

if (task.status != TaskStatus.Success){

TaskStatus childrenStatus = task.Run(agent, wordManager);

if (childrenStatus == TaskStatus.Failure){

status = TaskStatus.Failure;

return status;

}

else if (childrenStatus == TaskStatus.Success){

successCount++;

}

...

Composite Classes

...

else{

break;

}

}

else{

successCount++;

}

}

if (successCount == children.Count)

status = TaskStatus.Success;

else

status = TaskStatus.Running;

return status;

}

}

Composite Classes

• Selector Class:

public class Selector : Task {

public override TaskStatus Run(Agent agent,

WorldManager wordManager){

int failureCount = 0;

foreach (Task task in children){

if (task.status != TaskStatus.Failure){

TaskStatus childrenStatus = task.Run(agent, wordManager);

if (childrenStatus == TaskStatus.Success){

status = TaskStatus.Success;

return status;

}

else if (childrenStatus == TaskStatus.Failure){

failureCount++;

}

...

Composite Classes

...

else{

break;

}

}

}

if (failureCount == children.Count)

status = TaskStatus.Failure;

else

status = TaskStatus.Running;

return status;

}

}

Condition Classes

• DoorOpenCondition Class:

public class DoorOpenCondition : Task {

private string doorName;

public DoorOpenCondition(string door){

doorName = door;

}

public override TaskStatus Run(Agent agent,

WorldManager wordManager){

if (wordManager.DoorIsOpen(doorName)){

status = TaskStatus.Success;

}

else{

status = TaskStatus.Failure;

}

return status;

}

}

Action Classes
• MoveAction Class:

public class MoveAction : Task{

private string destionation;

public MoveAction(string dest){

destionation = dest;

}

public override TaskStatus Run(Agent agent,

WorldManager wordManager){

NavMeshAgent navMeshAgent = agent.GetComponent<NavMeshAgent>();

Vector3 dest = wordManager.GetWaypoint(destionation).position;

if (status == TaskStatus.None){

navMeshAgent.destination = dest;

status = TaskStatus.Running;

}

else if (IsAtDestionation(navMeshAgent)){

status = TaskStatus.Success;

}

return status;

}

Action Classes

...

private bool IsAtDestionation(NavMeshAgent navMeshAgent){

if (!navMeshAgent.pathPending){

if (navMeshAgent.remainingDistance <=

navMeshAgent.stoppingDistance){

if (!navMeshAgent.hasPath ||

navMeshAgent.velocity.sqrMagnitude == 0f){

return true;

}

}

}

return false;

}

}

Action Classes
• OpenDoorAction Class:

public class OpenDoorAction : Task{

private string doorName;

public OpenDoorAction(string door){

doorName = door;

}

public override TaskStatus Run(Agent agent,

GameWorldManager wordManager){

if (!wordManager.DoorIsOpen(doorName)){

wordManager.OpenDoor(doorName);

}

status = TaskStatus.Success;

return status;

}

}

World Manager Class
public class WorldManager : MonoBehaviour {

[SerializeField] private DoorInfo[] doors;

[SerializeField] private WaypointInfo[] waypoints;

public void OpenDoor(string doorName){

for (int x = 0; x < doors.Length; x++){

if (doors[x].name == doorName){

doors[x].transform.Translate(Vector3.right * 2f);

doors[x].open = true;

break;

}

}

}

public void CloseDoor(string doorName){

for (int x = 0; x < doors.Length; x++){

if (doors[x].name == doorName){

doors[x].transform.Translate(Vector3.left * 2f);

doors[x].open = false;

break;

}

}

}

World Manager Class

...

public bool DoorIsOpen(string doorName){

for (int x = 0; x < doors.Length; x++){

if (doors[x].name == doorName){

return doors[x].open;

}

}

return false;

}

public Transform GetWaypoint(string name){

foreach (WpInfo wp in waypoints){

if (wp.name == name)

return wp.transform;

}

return null;

}

}

Agent Class
public class Agent : MonoBehaviour

{

[SerializeField] private WorldManager wordManager;

private Task behaviorTree;

private TaskStatus behaviorTreeStatus = TaskStatus.None;

void Start(){

Task sequenceMoveToRoom = new Sequence();

sequenceMoveToRoom.AddChildren(new DoorOpenCondition("Door1"));

sequenceMoveToRoom.AddChildren(new MoveAction("Room1"));

Task sequenceOpenDoorMoveToRoom = new Sequence();

sequenceOpenDoorMoveToRoom.AddChildren(new MoveAction("Door1"));

sequenceOpenDoorMoveToRoom.AddChildren(new OpenDoorAction("Door1"));

sequenceOpenDoorMoveToRoom.AddChildren(new MoveAction("Room1"));

behaviorTree = new Selector();

behaviorTree.AddChildren(sequenceMoveToRoom);

behaviorTree.AddChildren(sequenceOpenDoorMoveToRoom);

}

Agent Class
...

void Update(){

if ((behaviorTreeStatus == TaskStatus.None) ||

(behaviorTreeStatus == TaskStatus.Running)){

behaviorTreeStatus = behaviorTree.Run(this, wordManager);

}

}

}

Exercise 1

1) Implement and test the following behavior tree:

Non-Deterministic Composite Tasks

• Sometimes the order in which tasks are executed is extremely
important. But there are some tasks that don’t need to be
executed in a particular order.
– Executing tasks in same order can lead to predictable AI who always

try the same things.

– Example (sequence): get matches and gasoline to burn the door.

– Example (selector): invade the room through the door or through the
window.

• Non-deterministic composites can be implemented by
shuffling the order of the children nodes before iterating
through them.

Non-Deterministic Composite Tasks

Non-Deterministic Selector

Non-Deterministic Sequence

Non-Deterministic Composite Tasks

• NonDeterministicSequence Class:

public class NonDeterministicSequence : Task {

private bool shuffledOrder;

public NonDeterministicSequence()

{

shuffledOrder = false;

}

public override TaskStatus Run(Agent agent,

WorldManager wordManager){

if (!shuffledOrder){

Shuffle(children);

shuffledOrder = true;

}

...

}

}

Non-Deterministic Composite Tasks

• Simple Shuffle method:

public void Shuffle(List<Task> list)

{

int n = list.Count;

while (n > 1)

{

int k = Random.Range(0, n);

Task value = list[k];

list[k] = list[n];

list[n] = value;

n--;

}

}

Decorators

• Decorator is a type of task that has one single child task and
modifies its behavior in some way.

• Examples:
– Limit the number of times a task can be run;

– Keep a task running until it fails;

Decorator

Decorator Classes

• Decorator Class:

• UntilFailDecorator Class:

public abstract class Decorator : Task {

protected Task child;

new public void AddChildren(Task task)

{

child = task;

}

}

public class UntilFailDecorator : Decorator{

public override TaskStatus Run(Agent agent,

WorldManager wordManager){

if (status == TaskStatus.None)

status = TaskStatus.Running;

if (child.Run(agent, wordManager) == TaskStatus.Failure)

status = TaskStatus.Success;

return status;

}

}

Parallel Tasks

• When parallel actions are necessary, we can add a third type
of composite tasks to the behavior tree: Parallel.

• Rather than running all children tasks one at a time, it runs
them all simultaneously.
– Example: a character rolling into cover at the same time as shouting an

insult and changing primary weapon.

• The Parallel task acts in a similar way to the Sequence task. It
has a set of child tasks, and it runs them simultaneously until
one of them fails.

Parallel Tasks

• At a higher level, we can also use Parallel tasks to control the
behavior of a group of characters.

Parallel

Parallel Class
public class Parallel : Task {

public override TaskStatus Run(Agent agent, WorldManager wordManager){

int successCount = 0;

foreach (Task task in children){

if (task.status != TaskStatus.Success){

TaskStatus childrenStatus = task.Run(agent, wordManager);

if (childrenStatus == TaskStatus.Failure){

status = TaskStatus.Failure;

return status;

}

else if (childrenStatus == TaskStatus.Success)

successCount++;

}

else

successCount++;

}

if (successCount == children.Count)

status = TaskStatus.Success;

else

status = TaskStatus.Running;

return status;

}

}

Exercise 2

2) Implement and test the following behavior tree:

Shoot
Enemy

Is Low on
Ammo?

Reload
Weapon

Enemy is
Visible?

Repeat

?

Always
Succeed

Further Reading

• Millington, I., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.).
CRC Press. ISBN: 978-0123747310.

– Chapter 5.4: Behavior Trees

