
Artificial Intelligence

Edirlei Soares de Lima

<edirlei.slima@gmail.com>

Lecture 05 – Randomness and Probability

Game AI – Model

• Pathfinding

• Steering behaviours

• Finite state machines

• Automated planning

• Behaviour trees

• Randomness

• Sensor systems

• Machine learning

Randomness in Games

• Game programmers have a special relationship with random
numbers. They can be used for several tasks:
– Damage calculation;

– Critical hits probability;

– Item drop probability;

– Reward probability;

– Enemy stats;

– Spawning enemies and items;

– Shooting spread zones;

– Decision making;

– Procedural content generation;

– …

Randomness and Probability

• Although most programming languages include functions to
generate pseudo-random numbers, there are some situations
where some control over the random numbers is extremely
important.

– Gaussian Randomness: normal distribution of random numbers.

– Filtered Randomness: manipulation of random numbers so they
appear more random to players over short time frames.

– Perlin Noise: consecutive random numbers that are related to each
other.

Gaussian Randomness

• Normal distributions (also known as Gaussian distributions)
are all around us, hiding in the statistics of everyday life.

Height of Trees Height of People

Gaussian Randomness

• Normal distributions (also known as Gaussian distributions)
are all around us, hiding in the statistics of everyday life.

Speed of Runners in a Marathon Speed of Cars on a Highway

Gaussian Randomness

• There is randomness in previous examples, but they are not
uniformly random.

• Example:
– The chance of a man growing to be 170 cm tall is not the same as the

chance of him growing to a final height of 150 cm tall or 210 cm tall.

– We see a normal distribution with the height of men centered around
170 cm.

Gaussian Randomness

• Normal Distribution vs. Uniform Distribution:

Normal Distribution Uniform Distribution

Gaussian Randomness

• The large majority of distributions in life are closer to a
normal distribution than a uniform distribution.

• Central Limit Theorem: when several independent random
variables are added together, the resulting sum will follow a
normal distribution.

– Example: roll and sum
three 6-sided dices.

Gaussian Randomness

• Why do most distributions in life follow a normal distribution?
– Almost everything in the universe has more than one contributing

factor, and those factors have random aspects associated with them.

• Example: what determines how tall a tree will grow?
– Genes, precipitation, soil quality, air quality, amount of sunlight,

temperature, exposure to insects, ...

– For an entire forest, each tree experiences varying aspects of each
quality, depending on where the tree is located.

Gaussian Randomness

• How Gaussian randomness can be generated?

– Box-Muller Transform (Marsaglia polar method):

public static float NextGaussian()

{

float v1, v2, s;

do{

v1 = 2.0f * Random.Range(0f, 1f) - 1.0f;

v2 = 2.0f * Random.Range(0f, 1f) - 1.0f;

s = v1 * v1 + v2 * v2;

}while (s >= 1.0f || s == 0f);

s = Mathf.Sqrt((-2.0f * Mathf.Log(s)) / s);

return v1 * s;

}

Gaussian Randomness

• We can change the normal distribution according to a specific
mean and standard deviation:

• We can also guarantee that values never fall outside the
limits:

public static float NextGaussian(float mean, float std_dev)

{

return mean + NextGaussian() * std_dev;

}

public static float NextGaussian(float mean, float std_dev,

float min, float max){

float v;

do{

v = NextGaussian(mean, standard_deviation);

}while (v < min || v > max);

return v;

}

Gaussian Randomness

• Testing the gaussian random numbers:

void Start () {

Texture2D texture = new Texture2D(128, 128);

GetComponent<Renderer>().material.mainTexture = texture;

for (int x = 0; x < 300; x++) {

texture.SetPixel((int)NextGaussian(64, 10, 0, 128),

(int)NextGaussian(64, 10, 0, 128),

Color.black);

}

texture.Apply();

}

Applications of Gaussian Randomness

Uniform
Distribution

Gaussian
Distribution

50 Bullets

100 Bullets

200 Bullets

400 Bullets

• Gun aiming variation.

• Any aspect of an NPC that may
vary within a population:
o Average or max acceleration.

o Size, width, height, or mass.

o Fire or reload rate for firing.

o Refresh rate or cool-down rate for
healing or special abilities.

o Chance of striking a critical hit.

o Level of intelligence.

Exercise 1

1) Create a random population of 100 characters whose
height follow a normal distribution in Unity. You can use
any object to represent the characters, such as cubes or
cylinders.

Randomness Test

• Exercise 1: grab a piece of paper and start writing down 0’s
and 1’s in a random sequence with a 50% chance of each—do
it until you have a list of 100 numbers.

• Exercise 2: take out a coin and start flipping it, recording the
sequence of heads and tails as 0s and 1s. Flip it 100 times and
write the results in the paper.

Randomness Test

• Exercise 3: compare the two lists you made to a list created by
a pseudo-random number generator function, with the same
50% chance of either a 0 or a 1. Example:

01101100001100001010000001001011110011100111000110

10101011011111101001011110011111101011111101000011

What are the differences between the hand-generated list,
the coin flip list, and the computer generated one?

Randomness Test

• It’s very likely that the coin flip and computer generated lists
contain many more long runs of 0’s or 1’s compared to the
hand-generated list.
– Most people don’t realize that real randomness almost always

contains these long runs.

– Most people simply don’t believe a fair coin or real randomness will
produce those long runs of heads or tails.

Randomness in Games

• Many games include situations where a uniformly distributed
random number determines something that affects the player,
either positively or negatively.

• Players have expectations and they believe in “fair probability”.

• Randomness is too random for many uses in games:
– If the player don’t believes in the game randomness, he/she will thing

that the game is either broken or cheating—all of which are terrible
qualities to attribute to a game or an AI.

Randomness in Games

• We have now entered the realm of psychology, and we have
temporarily left mathematics.
– If the player thinks the game is cheating, then the game effectively is

cheating despite what is really happening.

– Perception is far more important than reality when it comes to the
player’s enjoyment of the game.

• Solution?
– Make the numbers slightly less random!

– When generating a random sequence of numbers, if the next number
will hurt the appearance of randomness, pretend that you never saw it
and generate a new number.

Identifying Anomalies

• What makes a sequence of random numbers look less
random?

1. The sequence has a pattern that stands out (e.g. 11001100 or
111000).

2. The sequence has a long run of the same number (e.g.
01011111110).

• The goal is to write some rules to identify these anomalies,
and then throw out the last number that triggers a rule.

Filtering Binary Randomness

• Rules:
1. If the newest value will produce a run of 4 or more equal values,

then there is a 75% chance to flip the newest value.
• This doesn’t make runs of 4 or more impossible, but progressively much less likely

(the probability of a run of 4 occurring goes from 1/8 to 1/128).

2. If the newest value causes a repeating pattern of four values, then
flip the last value.
• Example: 11001100 becomes 11001101

3. If the newest value causes a repeating pattern of two values with
three repetitions each, then flip the last value.
• Example: 111000 becomes 111001

Filtering Binary Randomness

• Original sequence:

01101100001100001010000001001011110011100111000110

10101011011111101001011110011111101011111101000011

• Filtered sequence (highlighted numbers are flipped):

01101100011000101010001001001011100111001110010110

10101011011101101001011100111011101011101101000110

Filtering Binary Randomness

public class BinaryRandom {

private List<int> generatedNumbers;

private int maxHistory;

public BinaryRandom(int historySize){

maxHistory = historySize;

generatedNumbers = new List<int>();

}

public int NextBinary(){

int value = Random.Range(0, 2);

if (generatedNumbers.Count > maxHistory)

generatedNumbers.RemoveAt(0);

if (FilterValue(value))

value = FlipValue(value);

generatedNumbers.Add(value);

return value;

}

...

Filtering Binary Randomness

...

private int FlipValue(int value){

if (value == 1)

return 0;

else

return 1;

}

private bool FilterValue(int value){

if (FourRunsBinaryRule(value))

return true;

if (FourRepetitionsPatternBinaryRule(value))

return true;

if (TwoRepetitionsPatternBinaryRule(value))

return true;

return false;

}

...

Filtering Binary Randomness

...

private bool FourRunsBinaryRule(float value){

if (generatedNumbers.Count < 3)

return false;

for (int i = generatedNumbers.Count - 1;

i >= generatedNumbers.Count - 3; i--)

{

if (generatedNumbers[i] != value)

return false;

}

if (Random.Range(0, 4) == 0)

return false;

return true;

}

... Rule 1: if the newest value will produce a
run of 4 or more equal values, then there
is a 75% chance to flip the newest value.

Filtering Binary Randomness

...

private bool FourRepetitionsPatternBinaryRule(float value){

if (generatedNumbers.Count < 7)

return false;

if (generatedNumbers[generatedNumbers.Count - 1] != value)

return false;

int count = 0;

for (int i = generatedNumbers.Count - 2;

i >= generatedNumbers.Count - 7; i-=2)

{

if (generatedNumbers[i] == generatedNumbers[i - 1])

count++;

}

if (count < 3)

return false;

return true;

}

...

Rule 2: if the newest value causes a
repeating pattern of four values, then
flip the last value.

Filtering Binary Randomness

...

private bool TwoRepetitionsPatternBinaryRule(float value){

if (generatedNumbers.Count < 5)

return false;

if ((generatedNumbers[generatedNumbers.Count - 1] != value) ||

(generatedNumbers[generatedNumbers.Count - 2] != value))

return false;

for (int i = generatedNumbers.Count - 3;

i >= generatedNumbers.Count - 5; i--)

{

if (generatedNumbers[i] == value)

return false;

}

return true;

}

}

Rule 3: if the newest value causes a repeating
pattern of two values with three repetitions
each, then flip the last value.

Filtering Integer Ranges

• Rules:
1. Repeating numbers.

• Example: [7, 7] or [3, 3].

2. Repeating numbers separated by one digit.
• Example: [8, 3, 8] or [6, 2, 6].

3. A counting sequence of 4 that ascends or descends.
• Example: [3, 4, 5, 6].

4. Too many values (4) at the top or bottom of a range within the last
10 values.
• Example: [6, 8, 7, 9, 8, 6, 9].

5. Patterns of two numbers that appear in the last 10 values.
• Example: [5, 7, 3, 1, 5, 7].

6. Too many (4) of a particular number in the last 10 values.
• Example: [9, 4, 5, 9, 7, 8, 9, 0, 2, 9].

Filtering Integer Ranges

• Original sequence:

22312552222577750677564061448482102435500989388459

59607889964957780753281574605482138446235103745368

• Filtered sequence (highlighted numbers are thrown out):

22312552222577750677564061448482102435500989388459

59607889964957780753281574605482138446235103745368

Exercise 2

2) Based on the binary filter, create a class to filter integer
ranges according to the following rules:

1. Avoid repeating numbers (e.g.: [7, 7] or [3, 3]).

2. Avoid repeating numbers separated by one digit (e.g.: [8, 3, 8] or
[6, 2, 6].

3. Avoid ascends or descends counting sequences of 4 numbers
(e.g.: [3, 4, 5, 6]).

4. Avoid 4 repetitions of a particular number in the last 10 values
(e.g.: [9, 4, 5, 9, 7, 8, 9, 0, 2, 9]).

Filtering Floating-Point Ranges

• Rules:
1. Reroll if two consecutive numbers differ by less than 0.02.

• Example: [0.875, 0.856].

2. Reroll if three consecutive numbers differ by less than 0.1.
• Example: [0.345, 0.421, 0.387].

3. Reroll if there is an increasing or decreasing run of 5 values.
• Example: [.342, 0.572, 0.619, 0.783, 0.868].

4. Reroll if there are too many values (4) at the top or bottom of a
range within the last 10 values.
• Example: [0.325, 0.198, 0.056, 0.432, 0.119, 0.043].

Perlin Noise for Game AI

• Perlin noise is a type of gradient noise typically used in
computer graphics to generate organic textures.

• Perlin noise generates a form of coherent randomness, where
consecutive random numbers are related to each other.
– This “smooth” nature of randomness don’t generates wild jumps from

one random number to another, which can be a very desirable trait.

Perlin Noise for Game AI

• Possible applications of Perlin noise for game AI:

– Movement (direction, speed, acceleration);

– Layered onto animation (adding noise to facial movement or gaze);

– Attention (guard alertness, response time);

– Play style (defensive, offensive);

– Mood (calm, angry, happy, sad, depressed, manic, bored, engaged);

Perlin Noise in Unity

• Unity has a function to compute 2D Perlin noise:

• It returns the Perlin noise value between 0.0 and 1.0.

• Although the noise plane is two-dimensional, we can ignore
one coordinate and sample the noise from just one-dimension.

float Mathf.PerlinNoise(float x, float y);

Perlin Noise in Unity

• Example: movement direction:

public class WanderAgent : MonoBehaviour

{

public float speed = 2;

public float rotationFactor = 1.2f;

public float seed = 0.5f;

void Update ()

{

transform.forward = new Vector3(Mathf.PerlinNoise(Time.time *

seed, 0.0f) * rotationFactor,

transform.forward.y, transform.forward.z);

transform.position += transform.forward * Time.deltaTime * speed;

}

}

Further Reading

• Rabin, S., Goldblatt, J., and Silva, F. (2013). Game AI Pro: Collected
Wisdom of Game AI Professionals. Steven Rabin (ed.), A K Peters/CRC
Press, ISBN: 978-1466565968.

– Chapter 3: Advanced Randomness Techniques for Game AI

