
Artificial Intelligence

Edirlei Soares de Lima

<edirlei.slima@gmail.com>

Lecture 04 – Automated Planning

Game AI – Model

• Pathfinding

• Steering behaviours

• Finite state machines

• Automated planning

• Behaviour trees

• Randomness

• Sensor systems

• Machine learning

Decision Making

• In game AI, decision making is the ability
of a character/agent to decide what to
do.

• The agent processes a set of information
that it uses to generate an action that it
wants to carry out.
– Input: agent’s knowledge about the world;

– Output: an action request;

Decision Making

• The knowledge can be broken down into external and
internal knowledge.
– External knowledge: information about the game environment (e.g.

characters’ positions, level layout, noise direction).

– Internal knowledge: information about the character’s internal state
(e.g. health, goals, last actions).

Goal-Oriented Behavior

• So far we have focused on reactive agents: a set of inputs is
provided to the character, and an appropriate action is
selected.
– Goal-oriented behavior is an alternative approach. It adds character

goals/desires to the decision making process.

• To allow an NPC to properly anticipate the effects and take
advantage of sequences of actions, a planning process is
required.
– Automated Planning Techniques.

Automated Planning

• Planning is the task of finding a sequence of actions (a plan) to
achieve a goal.

• Example:
– Goal: have(sword) Λ at(castle)

– Plan: go(dungeon), kill(enemy), get(key), go(forest),
open(chest, key), get(sword), go(castle).

• Plan-based agent process:
1) Formulate a goal;

2) Find a plan;

3) Execute the plan;

Automated Planning

• A planning problem is usually represented through a planning
language, such as the PDDL (Planning Domain Definition
Language).
– PDDL was derived from the original STRIPS model, which is slightly

more restrictive.

• Planning problem elements:
– Initial State;

– Actions (with preconditions and effects);

– Goal;

Planning Problem

• Each state is represented as a conjunction of predicates.
– Example: At(Truck1, Melbourne) ∧ At(Truck2, Sydney).

– Closed-world assumption: any predicates that are not mentioned are
false.

• Actions are described by a set of action schemas with
parameters, preconditions, and effects.
– Example:

Action(

Fly(p, f, t),

PRECOND: At(p, f) ∧ Plane(p) ∧ Airport(f) ∧ Airport(t)

EFFECT: ¬At(p, f) ∧ At(p, t)

)

Planning Problem

• The precondition defines the states in which the action can be
executed.

• Example:

– Initial State: At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1) ∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport (JFK) ∧ Airport (SFO)

– The Fly action can be instantiated as Fly(P1, SFO, JFK) or as Fly(P2, JFK, SFO).

Action(

Fly(p, f, t),

PRECOND: At(p, f) ∧ Plane(p) ∧ Airport(f) ∧ Airport(t)

EFFECT: ¬At(p, f) ∧ At(p, t)

)

Planning Problem

• The effect defines the result of executing the action.

• Example:

– Initial State: At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1) ∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport (JFK) ∧ Airport (SFO)

– Negative predicates are removed from the resulting state (e.g. ¬At(p, f));

– Positive predicates are added to the resulting state (e.g. At(p, t));

Action(

Fly(p, f, t),

PRECOND: At(p, f) ∧ Plane(p) ∧ Airport(f) ∧ Airport(t)

EFFECT: ¬At(p, f) ∧ At(p, t)

)

Example – Air Cargo Transport
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧

Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧
Airport (JFK) ∧ Airport (SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))

Action(

Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)

EFFECT: ¬At(c, a) ∧ In(c, p)

)

Action(

Unload(c, p, a),

PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)

EFFECT: At(c, a) ∧ ¬In(c, p)

)

Action(

Fly(p, f, t),

PRECOND: At(p, f) ∧ Plane(p) ∧ Airport(f) ∧ Airport(t)

EFFECT: ¬At(p, f) ∧ At(p, t)

)

Example – Blocks World
Init(On(A, Table) ∧ On(B, Table) ∧ On(C, A) ∧

Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(B) ∧
Clear(C))

Goal(On(A,B) ∧ On(B,C))

Action(

Move(b, x, y),

PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧
Block(b) ∧ Block(y) ∧ (b ≠ x) ∧
(b ≠ y) ∧ (x ≠ y),

EFFECT: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧
¬Clear(y)

)

Action(

MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧
(b ≠ x),

EFFECT: On(b, Table) ∧ Clear(x) ∧ ¬On(b, x)

)

Planning Algorithms

• The description of a planning problem defines a search
problem: we can search from the initial state looking for a goal.

• Planning approaches:
– Progressive: forward state-space search;

– Regressive: backward relevant-states search;

Forward State-Space Search

take c3

move r1

take c2 …

…

Backward Relevant-States Search

g0

g1

g2

g3

a1

a2

a3

g4

g5

s0

a4

a5

Planning Domain Definition Language

• A planning problem is usually represented through a planning
language, such as the PDDL (Planning Domain Definition
Language).
– PDDL was derived from the original STRIPS model, which is slightly

more restrictive.

• Planning problems specified in PDDL are defined in two files:
– Domain File: types, predicates, and actions.

– Problem File: objects, initial state, and goal.

PDDL – Syntax

• Domain File:

• Problem File:

(define (domain <domain name>)

(:requirements :strips :equality :typing)

(:types <list of types>)

(:constants <list of constants>)

<PDDL code for predicates>

<PDDL code for first action>

[...]

<PDDL code for last action>

)

(define (problem <problem name>)

(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>

<PDDL code for goal specification>

)

PDDL – Example Problem

• “There is robot that can move between two rooms
and pickup/putdown boxes with two arms. Initially,
the robot and 4 boxes are at room 1. The robot must
take all boxes to room 2.”

Room 1 Room 2

PDDL – Domain File

• Types:

• Constants:

• Predicates:
– robot-at(x) – true if the robot is at room x;

– box-at(x, y) – true if the box x is at room y;

– free(x) – true if the arm x is not holding a box;

– carry(x, y) – true if the arm x is holding a box y;

(:types room box arm)

(:constants left right - arm)

(:predicates

(robot-at ?x - room)

(box-at ?x - box ?y - room)

(free ?x - arm)

(carry ?x – box ?y - arm)

)

PDDL – Domain File

• Action: move the robot from room x to room y.

• Precondition: robot-at(x) must be true.

• Effect: robot-at(y) becomes true and robot-at(x) becomes
false.

(:action move

:parameters (?x ?y - room)

:precondition (robot-at ?x)

:effect (and (robot-at ?y) (not (robot-at ?x)))

)

PDDL – Domain File

• Pickup Action:

• Putdown Action:

(:action pickup

:parameters (?x - box ?y - arm ?w - room)

:precondition (and (free ?y) (robot-at ?w)

(box-at ?x ?w))

:effect (and (carry ?x ?y) (not (box-at ?x ?w))

(not(free ?y)))

)

(:action putdown

:parameters (?x - box ?y -arm ?w - room)

:precondition (and (carry ?x ?y) (robot-at ?w))

:effect (and (not(carry ?x ?y)) (box-at ?x ?w)

(free ?y))

)

PDDL – Domain File
(define (domain robot)

(:requirements :strips :equality :typing)

(:types room box arm)

(:constants left right - arm)

(:predicates

(robot-at ?x - room)

(box-at ?x - box ?y - room)

(free ?x - arm)

(carry ?x - box ?y - arm)

)

(:action move

:parameters (?x ?y - room)

:precondition (robot-at ?x)

:effect (and (robot-at ?y) (not (robot-at ?x)))

)

(:action pickup

:parameters (?x - box ?y - arm ?w - room)

:precondition (and (free ?y) (robot-at ?w) (box-at ?x ?w))

:effect (and (carry ?x ?y) (not (box-at ?x ?w)) (not(free ?y)))

)

(:action putdown

:parameters (?x - box ?y -arm ?w - room)

:precondition (and (carry ?x ?y) (robot-at ?w))

:effect (and (not(carry ?x ?y)) (box-at ?x ?w) (free ?y))

)

)

PDDL – Problem File

• Objects: rooms, boxes, and arms.

• Initial State: the robot and all boxes are at room 1.

(:objects

room1 room2 - room

box1 box2 box3 box4 - box

left right - arm

)

(:init

(robot-at room1)

(box-at box1 room1)

(box-at box2 room1)

(box-at box3 room1)

(box-at box4 room1)

(free left)

(free right)

)

PDDL – Problem File

• Goal: all boxes must be at room 2.

(:goal

(and (box-at box1 room2)

(box-at box2 room2)

(box-at box3 room2)

(box-at box4 room2)

)

)

PDDL – Problem File
(define (problem robot1)

(:domain robot)

(:objects

room1 room2 - room

box1 box2 box3 box4 - box

left right - arm

)

(:init

(robot-at room1)

(box-at box1 room1)

(box-at box2 room1)

(box-at box3 room1)

(box-at box4 room1)

(free left)

(free right)

)

(:goal

(and

(box-at box1 room2)

(box-at box2 room2)

(box-at box3 room2)

(box-at box4 room2)

)

)

)

PDDL – Planners

• HSP Planner - https://github.com/bonetblai/hsp-planners
– Heuristic Search Planner;

– Compiled version for windows (cygwin):
http://edirlei.3dgb.com.br/aulas/ia_2013_1/HSP-Planner.zip

• Online PDDL Planner:
– Editor: http://editor.planning.domains/

– Remote API: http://solver.planning.domains/

https://github.com/bonetblai/hsp-planners
http://edirlei.3dgb.com.br/aulas/ia_2013_1/HSP-Planner.zip
http://editor.planning.domains/
http://solver.planning.domains/

HSP Planner

• Executing the planner:
– hsp.exe robot-problem.pddl robot-domain.pddl

• Extra parameters:
– Search direction: -d backward ou forward

– Search algorithm: -a bfs ou gbfs

HSP Planner

• Forward search:

(PICKUP BOX4 RIGHT ROOM1)

(PICKUP BOX3 LEFT ROOM1)

(MOVE ROOM1 ROOM2)

(PUTDOWN BOX4 RIGHT ROOM2)

(PUTDOWN BOX3 LEFT ROOM2)

(MOVE ROOM2 ROOM1)

(PICKUP BOX2 RIGHT ROOM1)

(PICKUP BOX1 LEFT ROOM1)

(MOVE ROOM1 ROOM2)

(PUTDOWN BOX2 RIGHT ROOM2)

(PUTDOWN BOX1 LEFT ROOM2)

• Backward search:

(PICKUP BOX1 LEFT ROOM1)

(MOVE ROOM1 ROOM2)

(PUTDOWN BOX1 LEFT ROOM2)

(MOVE ROOM2 ROOM1)

(PICKUP BOX2 LEFT ROOM1)

(MOVE ROOM1 ROOM2)

(PUTDOWN BOX2 LEFT ROOM2)

(MOVE ROOM2 ROOM1)

(PICKUP BOX3 LEFT ROOM1)

(PICKUP BOX4 RIGHT ROOM1)

(MOVE ROOM1 ROOM2)

(PUTDOWN BOX3 LEFT ROOM2)

(PUTDOWN BOX4 RIGHT ROOM2)

Online PDDL Planner

Online PDDL Planner

• Resulting plan:

(pickup box1 left room1)

(move room1 room2)

(putdown box1 left room2)

(move room2 room1)

(pickup box2 left room1)

(move room1 room2)

(putdown box2 left room2)

(move room2 room1)

(pickup box3 left room1)

(move room1 room2)

(putdown box3 left room2)

(move room2 room1)

(pickup box4 left room1)

(move room1 room2)

(putdown box4 left room2)

PDDL – Simple Game Situation

• “The objective of the NPC is to kill the player, but he can't do
much without a weapon.”

– The game world comprises three places: store, street and a house;

– There is a gun at the store;

– The NPC is at the street;

– The player is at the house;

StreetStore House

PlayerGun NPC

PDDL – Simple Game Situation
(define (domain simplegame)

(:requirements :strips :equality :typing)

(:types location character enemy weapon)

(:predicates

(at ?c ?l)

(path ?l1 ?l2)

(has ?c ?w)

(dead ?c)

)

(:action go

:parameters (?c - character ?l1 - location ?l2 - location)

:precondition (and (at ?c ?l1) (path ?l1 ?l2))

:effect (and (at ?c ?l2) (not (at ?c ?l1)))

)

(:action get

:parameters (?c - character ?w - weapon ?l - location)

:precondition (and (at ?c ?l) (at ?w ?l))

:effect (and (has ?c ?w) (not (at ?w ?l)))

)

(:action kill

:parameters (?c - character ?e - enemy ?w - weapon ?l - location)

:precondition (and (at ?c ?l) (at ?e ?l) (has ?c ?w))

:effect (and (dead ?e) (not(at ?e ?l)))

)

)

PDDL – Simple Game Situation
(define (problem npc1)

(:domain simplegame)

(:objects

store street house - location

npc - character

player - enemy

gun - weapon

)

(:init

(at npc street)

(at player house)

(at gun store)

(path store street)

(path street store)

(path street house)

(path house street)

)

(:goal

(and

(dead player)

)

)

)

Exercise 1

1) Implement the PDDL domain and problem files to solve the following
problem: “A giant dragon is attacking the castle and John must find a
way to kill the dragon!”

Additional information:
• John can not leave a location if there is a alive enemy there;
• The weak troll can be killed with the weak weapon (sword);
• The chest is closed. It can be opened with the chest key;
• There is a strong weapon inside of the chest (magic bow);
• The dragon can only be killed with a strong weapon (the magic bow);

Town

Castle

Store

Forest River Cave

weak troll

strong dragon

weak weapon (sword)

chest key

strong weapon (magic bow)

inside

John

chest

Automated Planning in Unity

• The best way to add automated planning to a Unity project is
by implementing the planning algorithm directly in Unity.
– Starting point: C# PDDL Parser - https://github.com/sunsided/pddl

• Alternatively, we can use a modified version of the HSP
Planner (written in C) as a standard alone application that can
be executed by an Unity script to generate plans.
– http://edirlei.3dgb.com.br/aulas/game-ai/HPS-Planner-Unity.zip

– Not an efficient solution. Use it only for prototyping purposes.

• Another option: use the online planning service API:
– http://solver.planning.domains/

– Limitations: internet connection, speed, server overload, ...

https://github.com/sunsided/pddl
http://edirlei.3dgb.com.br/aulas/game-ai/HPS-Planner-Unity.zip
http://solver.planning.domains/

Automated Planning in Unity

• Executing the HSP Planner in Unity:

using System.Diagnostics;

...

try{

Process plannerProcess = new Process();

plannerProcess.StartInfo.FileName = "Planner/hsp2.exe";

plannerProcess.StartInfo.CreateNoWindow = true;

plannerProcess.StartInfo.Arguments = "Planner/game-problem.pddl

Planner/game-domain.pddl";

plannerProcess.StartInfo.UseShellExecute = false;

plannerProcess.StartInfo.RedirectStandardOutput = true;

plannerProcess.Start();

plannerProcess.WaitForExit();

while (!plannerProcess.StandardOutput.EndOfStream){

UnityEngine.Debug.Log(plannerProcess.StandardOutput.ReadLine());

}

}catch (System.Exception e){

UnityEngine.Debug.Log(e);

}

Relative path of the HSP
exe in the project folder.

Processes the plan actions
individually.

Automated Planning in Unity - Example

• Simple Game Situation Example: “The objective of the NPC is
to kill the player, but he can't do much without a weapon.”

Player

Gun
NPC

Street

House

Store

public class PlanAction {

public string name;

public List<string> parameters;

public Status status;

public PlanAction(string action){

string temp = "";

name = "";

parameters = new List<string>();

foreach (char c in action){

if (c == ' '){

if (name.Equals(""))

name = temp;

else

parameters.Add(temp);

temp = "";

}

else if (c == ')')

parameters.Add(temp);

else if (c != '(')

temp += c;

}

status = Status.Ready;

}

}

public enum Status { Ready,

Executing,

Completed

};

Class to store and interpret planner
actions.

public class NPCPlanner : MonoBehaviour {

private List<PlanAction> plan;

private int currentAction;

private NavMeshAgent agent;

public WaypointInfo[] waypoints;

void Start(){

plan = new List<PlanAction>();

agent = GetComponent<NavMeshAgent>();

currentAction = 0;

try{

Process planner = new Process();

planner.StartInfo.FileName = "Planner/hsp2.exe";

planner.StartInfo.CreateNoWindow = true;

planner.StartInfo.Arguments = "Planner/game-problem.pddl

Planner/game-domain.pddl";

planner.StartInfo.UseShellExecute = false;

planner.StartInfo.RedirectStandardOutput = true;

planner.Start();

planner.WaitForExit();

while (!planner.StandardOutput.EndOfStream){

plan.Add(new PlanAction(planner.StandardOutput.ReadLine()));

}

}catch (System.Exception e){

UnityEngine.Debug.Log(e);

}

}

[System.Serializable]

public struct WaypointInfo

{

public string name;

public Transform waypoint;

}

void Update(){

if (currentAction < plan.Count){

if (plan[currentAction].status == Status.Ready){

DoAction(plan[currentAction]);

}

if (plan[currentAction].status == Status.Executing){

CheckAction(plan[currentAction]);

}

if (plan[currentAction].status == Status.Completed){

currentAction++;

}

}

}

void DoAction(PlanAction action){

if (action.name.Equals("GO")){

agent.destination = GetWaypoint(action.parameters[2]);

action.status = Status.Executing;

}

else if (action.name.Equals("GET")){

Destroy(GameObject.FindGameObjectWithTag(action.parameters[1]));

action.status = Status.Executing;

}

else if (action.name.Equals("KILL")){

Destroy(GameObject.FindGameObjectWithTag(action.parameters[1]));

action.status = Status.Executing;

}

}

Just an example. Usually you
should play an animation.

void CheckAction(PlanAction action){

if (action.name.Equals("GO")){

if (IsAtDestionation())

action.status = Status.Completed;

}

else if (action.name.Equals("GET")){

action.status = Status.Completed;

}

else if (action.name.Equals("KILL")){

action.status = Status.Completed;

}

}

Vector3 GetWaypoint(string name){

foreach (WaypointInfo wp in waypoints){

if (wp.name.Equals(name))

return wp.waypoint.position;

}

return Vector3.zero;

}

public bool IsAtDestionation(){

...

}

}

Same function implemented
in last lecture.

Usually you need to wait
until the animation ends.

Exercise 2

2) Create a scene to represent the world specified in Exercise 1. Then,
integrate the HSP Planner in the project and implement the actions
of the NPC John to execute the generated plan.

Town

Castle

Store

Forest River Cave

weak troll

strong dragon

weak weapon (sword)

chest key

strong weapon (magic bow)

inside

John

chest

Automated Planning in Games
• Games that are know for using planning algorithms:

– STRIPS-based action planning:

– HTN-based action planning:

Automated Planning in Games

• There are many possible applications for automated planning
in games:
– Planning NPC actions;

– Strategy planning;

– Design, test, and evaluate puzzles;

– Quest generation;

– Interactive storytelling;

Hierarchical Generation of Dynamic
and Nondeterministic Quests

• A combination of several story-related quests can be used to create
complex narratives. The structure of the game's narrative can be
represented as a hierarchy of quests.
– Lima, E.S. Feijó, B., and Furtado, A.L. Hierarchical Generation of Dynamic and

Nondeterministic Quests in Games. International Conference on Advances in Computer
Entertainment Technology (ACE 2014).

Hierarchical Generation of Dynamic
and Nondeterministic Quests

Go to hospital Get antidote Go home Give antidote to wife

Save family

Save wife Protect houseTake home

¬has(player,antidote)

Go to market Get antidoteAsk old man for an antidote Get antidote

Go home Give antidote to wife Kill wife

Go home

¬has(player,antidote)

Protect house

Escape

Hierarchical Generation of Dynamic
and Nondeterministic Quests

Publications:
• Lima, E.S. Feijó, B., and Furtado, A.L. Hierarchical Generation of Dynamic and Nondeterministic Quests

in Games. International Conference on Advances in Computer Entertainment Technology, 2014.
• Lima, E.S. Feijó, B., and Furtado, A.L. Player Behavior Modeling for Interactive Storytelling in Games. XV

Brazilian Symposium on Computer Games and Digital Entertainment, 2016 [Best Paper Award].
• Lima, E.S. Feijó, B., and Furtado, A.L. Player Behavior and Personality Modeling for Interactive

Storytelling in Games. Entertainment Computing, 2018 [To Be Published].

Further Reading

• Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett
Learning. ISBN: 978-1-55622-078-4.

– Chapter 9: Goal-Driven Agent Behavior

• Millington, I., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.).
CRC Press. ISBN: 978-0123747310.

– Chapter 5.7: Goal-Oriented Behavior

Further Reading

• Three States and a Plan: The A.I. of F.E.A.R:
http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

• HTN Planning in Transformers: Fall of Cybertron:
https://aiandgames.com/cybertron-intel/

• Planning in Games: An Overview and Lessons Learned:
http://aigamedev.com/open/review/planning-in-games/

• Goal-Oriented Action Planning (GOAP):
http://alumni.media.mit.edu/~jorkin/goap.html

http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
https://aiandgames.com/cybertron-intel/
http://aigamedev.com/open/review/planning-in-games/
http://alumni.media.mit.edu/~jorkin/goap.html

