Artificial Intelligence

Lecture 08 — Behavior Trees

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

Game Al — Model

Pathfinding | |
Al gets given processor time
Steering behaviours _ Execution management
gets its
Finite state machines " | o A
. S——=—r| Strategy

Automated planning =

. E __Character Al
BEha\"our trees:% % J Decision making
Randomness = Movement

Sensor systems)
Animation || Physics

Machine learning

Al gets turned into on-screen action

Decision Making

In game Al, decision making is the ability
of a character/agent to decide what to
do.

The agent processes a set of information

that it uses to generate an action thatit B ese

wants to carry out.
— Input: agent’s knowledge about the world;
— Output: an action request;

Decision Making

* The knowledge can be broken down into external and
internal knowledge.

— External knowledge: information about the game environment (e.g.
characters’ positions, level layout, noise direction).

— Internal knowledge: information about the character’s internal state
(e.g. health, goals, last actions).

Internal knowledge

Internal changes
=} /
Action

request
Decision maker

4)

External knowledge External changes

Behavior Tree

e Behavior trees have a lot in common with Hierarchical State
Machines but, instead of a state, the main building block of a
behavior tree is a task.

— A task can be something as simple as looking up the value of a variable
in the game state, or executing an animation.

— Tasks can be decomposed into sub-trees to represent more complex
actions.

—>
Door Move Move Open Move
open? (into room) (to door) door (into room)

Behavior Tree —

Behavior trees are composed of three
types of tasks:

— Conditions: test some property of the game
(e.g. proximity, line of sight, state of the
character).

— Actions: alter the state of the game (e.g.
animation, movement, state change, dialog).

— Composites: Selector and Sequence.

» Selector: returns immediately with a success status
code when one of its children runs successfully.

* Sequence: returns immediately with a failure status
code when one of its children fails. As long as its
children are succeeding, it will keep going.

Tasks

Selector

\

Attack

Taunt

Stare

T

Actions

Sequence

—>

e

AN

Enemy Turn Run

visible? away away
\ V\/
Condition Actions

Behavior Tree — Example

Move

(into room)

—> —>
Door Move Move
open? (into room) (to door)
—>

>

/.

N

Door Open
locked? door

Barge
door

Door
open?

Unity Implementation — Class Diagram

Agent WorldManager
-behaviorTree: Task; -doors: DoorlInfo[];
-wordManager: WorldManager; -waypoints: Waypointinfo[];
-Start(); +OpenDoor(name);
-Update(); +CloseDoor(name);

Task +DoorlsOpen(name): bool;
+GetWaypoint(name): Vector3;
TaskStatus #children: Task[];
+status: TaskStatus;
None
Success +abstract Run(agent, manager): TaskStatus;
Failure
Running A
Sequence Selector Actions & Conditions

+Run(agent, manager): TaskStatus; +Run(agent, manager): TaskStatus; +Run(agent, manager): TaskStatus;

Base Task Class

 Task Class:

public abstract class Task

{
protected List<Task> children;

public TaskStatus status;

public abstract TaskStatus Run (Agent agent,
WorldManager wordManager) ;

public Task () {
children = new List<Task> () ;
status = TaskStatus.None;

public void AddChildren (Task task) {
children.Add (task) ;

Composite Classes

* Sequence Class:

public class Sequence : Task {

public override TaskStatus Run (Agent agent,

WorldManager wordManager) {
int successCount = 0;

foreach (Task task in children) {
if (task.status != TaskStatus.Success) {
TaskStatus childrenStatus = task.Run(agent, wordManager) ;
i1f (childrenStatus == TaskStatus.Failure) {
status = TaskStatus.Failure;
return status;

}

else 1f (childrenStatus == TaskStatus.Success) {
successCount++;

Composite Classes

else(
break;

}
else(
successCount++;

}

if (successCount == children.Count)
status = TaskStatus.Success;

else
status = TaskStatus.Running;

return status;

Composite Classes

 Selector Class:

public class Selector : Task {

public override TaskStatus Run (Agent agent,

WorldManager wordManager) {
int failureCount = 0;

foreach (Task task in children) {
if (task.status != TaskStatus.Failure) {
TaskStatus childrenStatus = task.Run(agent, wordManager) ;
i1f (childrenStatus == TaskStatus.Success) {
status = TaskStatus.Success;
return status;

}

else 1f (childrenStatus == TaskStatus.Failure) {
failureCount++;

Composite Classes

else(
break;

}

if (failureCount == children.Count)
status = TaskStatus.Failure;

else
status = TaskStatus.Running;

return status;

Condition Classes

 DoorOpenCondition Class:

public class DoorOpenCondition : Task {
private string doorName;

public DoorOpenCondition(string door) {
doorName = door;

public override TaskStatus Run (Agent agent,
WorldManager wordManager) {

1f (wordManager.DoorIsOpen (doorName)) {

status = TaskStatus.Success;
}
else(

status = TaskStatus.Failure;

}

return status;

Action Classes

e MoveAction Class:

public class MoveAction : Task/{
private string destionation;

public MoveAction(string dest) {
destionation = dest;

public override TaskStatus Run (Agent agent,

WorldManager wordManager) {

NavMeshAgent navMeshAgent = agent.GetComponent<NavMeshAgent> () ;
Vector3 dest = wordManager.GetWaypoint (destionation) .position;
if (status == TaskStatus.None) {

navMeshAgent.destination = dest;

status = TaskStatus.Running;
}
else if (IsAtDestionation (navMeshAgent)) {

status = TaskStatus.Success;
}

return status;

Action Classes

private bool IsAtDestionation (NavMeshAgent navMeshAgent) {
if (!navMeshAgent.pathPending) {
if (navMeshAgent.remainingDistance <=
navMeshAgent.stoppingDistance) {
if (!navMeshAgent.hasPath ||
navMeshAgent.velocity.sgrMagnitude == 0f) {
return true;

}

return false;

Action Classes
 OpenDoorAction Class:

public class OpenDoorAction : Task{
private string doorName;

public OpenDoorAction (string door) {
doorName = door;

public override TaskStatus Run (Agent agent,
GameWorldManager wordManager) {
if (!wordManager.DoorIsOpen (doorName)) {
wordManager .OpenDoor (doorName) ;
}
status = TaskStatus.Success;
return status;

World Manager Class

public class WorldManager : MonoBehaviour {
[SerializeField] private DoorInfo[] doors;
[SerializeField] private WaypointInfo[] waypoints;

public void OpenDoor (string doorName) {
for (int x = 0; x < doors.Length; x++) {

i1f (doors[x] .name == doorName) {
doors[x] .transform.Translate (Vector3.right * 2f);
doors[x] .open = true;
break;

}

public void CloseDoor (string doorName) {
for (int x = 0; x < doors.Length; x++) {
if (doors[x].name == doorName) {

doors[x] .transform.Translate (Vector3.left * 2f);
doors[x] .open = false;

break;

World Manager Class

public bool DoorIsOpen (string doorName) {
for (int x = 0; x < doors.Length; x++)
if (doors[x].name == doorName) {
return doors[x].open;

{

}

return false;

public Transform GetWaypoint (string name) {
foreach (WpInfo wp in waypoints) {
1f (wp.name == name)
return wp.transform;

}

return null;

Agent Class

public class Agent : MonoBehaviour
{
[SerializeField] private WorldManager wordManager;

private Task behaviorTree;
private TaskStatus behaviorTreeStatus = TaskStatus.None;

void Start () {
Task sequenceMoveToRoom = new Sequence();
sequenceMoveToRoom.AddChildren (new DoorOpenCondition ("Doorl"))
sequenceMoveToRoom.AddChildren (new MoveAction ("Rooml")) ;

Task sequenceOpenDoorMoveToRoom = new Sequence () ;

sequenceOpenDoorMoveToRoom.AddChildren (new MoveAction ("Doorl"));
sequenceOpenbDoorMoveToRoom.AddChildren (new OpenDoorAction ("Doorl"));
sequenceOpenbDoorMoveToRoom.AddChildren (new MoveAction ("Rooml")) ;
behaviorTree = new Selector();

behaviorTree.AddChildren (sequenceMoveToRoom) ;
behaviorTree.AddChildren (sequenceOpenDoorMoveToRoom) ;

Agent Class

void Update () {
1if ((behaviorTreeStatus == TaskStatus.None) ||
(behaviorTreeStatus == TaskStatus.Running)) {

behaviorTreeStatus = behaviorTree.Run (this, wordManager) ;

— —
Door Move Move Open Move
open? (into room) (to door) door (into room)

Exercise 1

1) Implement and test the following behavior tree:

— —
e /
Door Move Move Move
open? (into room) (to door) (into room)
—> —>
/ \
Door Open Barge Door

locked? door door open?

Non-Deterministic Composite Tasks

 Sometimes the order in which tasks are executed is extremely
important. But there are some tasks that don’t need to be
executed in a particular order.

— Executing tasks in same order can lead to predictable Al who always
try the same things.

— Example (sequence): get matches and gasoline to burn the door.

— Example (selector): invade the room through the door or through the
window.

* Non-deterministic composites can be implemented by
shuffling the order of the children nodes before iterating
through them.

Non-Deterministic Composite Tasks

Non-Deterministic Selector

Entering... Open door...

Barge door...

Non-Deterministic Sequence \

—~—

Douse door Ignite door

Get matches Get gasoline

Non-Deterministic Composite Tasks

* NonDeterministicSequence Class:

public class NonDeterministicSequence : Task {
private bool shuffledOrder;

public NonDeterministicSequence ()

{
shuffledOrder = false;

public override TaskStatus Run (Agent agent,
WorldManager wordManager) {
if (!shuffledOrder) {
Shuffle(children) ;
shuffledOrder = true;

Non-Deterministic Composite Tasks

Simple Shuffle method:

public void Shuffle (List<Task> list)
{

int n = list.Count;
while (n > 1)
{

int k = Random.Range (0, n);
Task value = list[k];
list[k] = list[n];

list[n] = value;

n--;

Decorators

* Decorator is a type of task that has one single child task and
modifies its behavior in some way.

 Examples: o
— Limit the number of times a task can be run;
— Keep a task running until it fails;
- (7)

AN

Move

Visible? $ Restrain

—
Decorator — Audible? Creep

T

Pause Hit

Conscious?

Decorator Classes

* Decorator Class:

public abstract class Decorator : Task {
protected Task child;

new public void AddChildren (Task task)
{

child = task;
}
 UntilFailDecorator Class:

public class UntilFailDecorator : Decorator{
public override TaskStatus Run (Agent agent,
WorldManager wordManager) {

if (status == TaskStatus.None)
status = TaskStatus.Running;

if (child.Run(agent, wordManager) == TaskStatus.Failure)
status = TaskStatus.Success;

return status;

Parallel Tasks

 When parallel actions are necessary, we can add a third type
of composite tasks to the behavior tree: Parallel.

e Rather than running all children tasks one at a time, it runs
them all simultaneously.

— Example: a character rolling into cover at the same time as shouting an
insult and changing primary weapon.

* The Parallel task acts in a similar way to the Sequence task. It
has a set of child tasks, and it runs them simultaneously until
one of them fails.

Parallel Tasks

* At a higher level, we can also use Parallel tasks to control the
behavior of a group of characters.

Parallel

1l

Retreat... Take cover...

— — —
Soldier 1: Soldier 1: Soldier 2: Soldier 2: Soldier 2: Soldier 3: Soldier 3: Soldier 3:
Has ammo? attack... Has ammo? In cover? Sniper attack... Has ammo? Exit route? Guard exit...

Parallel Class

public class Parallel : Task {
public override TaskStatus Run (Agent agent,

int successCount = 0;
foreach (Task task in children) {

1f (task.status != TaskStatus.Success) {

TaskStatus childrenStatus = task.Run (agent, wordManager) ;

if (childrenStatus == TaskStatus.Failure) {
status = TaskStatus.Failure;
return status;

WorldManager wordManager) {

}
else if
successCount++;

(childrenStatus == TaskStatus.Success)

}

else
successCount++;

}

if (successCount == children.Count)
status = TaskStatus.Success;

else
status = TaskStatus.Running;

return status;

Exercise 2

2) Implement and test the following behavior tree:

—>
En'e-my is —
Visible? —>
Shoot
Enemy
- Always
Succeed
Is Low on Reload

Ammo? Weapon

Further Reading

* Millington, I., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.).
CRC Press. ISBN: 978-0123747310.

— Chapter 5.4: Behavior Trees ARTIFICIAL

INTELLIGENCE
FOR GAMES

IAN MILLINGTON - JOHN FUNGE @992,

