
Artificial Intelligence

Edirlei Soares de Lima

<edirlei.lima@universidadeeuropeia.pt>

Lecture 03 – Finite State Machines

Game AI – Model

• Pathfinding

• Steering behaviours

• Finite state machines

• Automated planning

• Behaviour trees

• Randomness

• Sensor systems

• Machine learning

Decision Making

• In game AI, decision making is the ability
of a character/agent to decide what to
do.

• The agent processes a set of information
that it uses to generate an action that it
wants to carry out.
– Input: agent’s knowledge about the world;

– Output: an action request;

Decision Making

• The knowledge can be broken down into external and
internal knowledge.
– External knowledge: information about the game environment (e.g.

characters’ positions, level layout, noise direction).

– Internal knowledge: information about the character’s internal state
(e.g. health, goals, last actions).

Finite State Machines

• Usually, game characters have a limited set of possible
behaviors. They carry on doing the same thing until some
event or influence makes them change.
– Example: a guard will stand at its post until it notices the player, then it

will switch into attack mode, taking cover and firing.

• State machines are the technique most often used for this
kind of decision making process in games.

• What is a state machine?

Finite State Machines

• Actions or behaviors are associated
with each state.

• Each transition leads from one state
to another, and each has a set of
associated conditions.

• When the conditions of a transition
are met, then the character changes
state to the transition’s target state.

• Each character is controlled by one
state machine and they have a
current state.

Hard-Coded Finite State Machines

enum State {PATROL, DEFEND, SLEEP};

State myState;

function update(){

if (myState == PATROL){

if (canSeePlayer())

myState = DEFEND;

if (tired())

myState = SLEEP;

}

elseif (myState == DEFEND){

if not canSeePlayer()

myState = PATROL;

}

elseif (myState == SLEEP){

if (not tired())

myState = PATROL;

}

}

Exercise 1

1) Implement a hard-coded finite state machine to control an
NPC based on the following diagram:

Patrol Chase

Attack

[can see the player]

[can’t see the player]

[p
layer is

in
 th

e
attack

ran
ge]

[p
layer is

n
o

t
in

th
e

attack
ran

ge]

Hints:
• Use the pathfinding maze created

in last lecture as the base project.
• Create a list of waypoints to define

the patrol areas.

Hard-Coded Finite State Machines

• Although hard-coded state machines are easy to write and are
very fast, they are notoriously difficult to maintain.

• Complex finite states machines require thousands of lines of
code.

• Another weaknesses:
– Programmers are responsible for writing the AI behaviors of each

character.

– The game has to be recompiled each time the behavior changes.

Class-Based Finite State Machines

class StateMachine{

private List<State> states;

private State initialState;

private State currentState = initialState;

List<Action> update(){

triggeredTransition = Transition.None;

for each Transition t in currentState.getTransitions(){

if (t.isTriggered()){

triggeredTransition = t;

break;

}

}

...

Class-Based Finite State Machines

...

if (triggeredTransition)

{

targetState = triggeredTransition.getTargetState();

List<Action> actions = new List<Action>();

actions.Add(currentState.getExitAction());

actions.Add(triggeredTransition.getAction());

actions.Add(targetState.getEntryAction());

currentState = targetState;

return actions;

}

}

else

{

return currentState.getAction();

}

}

Unity – Implementation

Patrol Chase

Attack

[can see the player]

[can’t see the player]

[p
layer is

in
 th

e
attack

ran
ge]

[p
layer is

n
o

t
in

th
e

attack
ran

ge]

State

-entryAction: Action;
-stateActions: Action[];
-exitAction: Action;
-transitions: Transition[];

+GetActions():Action[];
+GetEntryAction():Action;
+GetExitAction():Action;
+GetTransitions():Transition[];

Action

+abstract Act(fsm);

Patrol Action

+Act(fsm);

Chase Action

+Act(fsm);

Attack Action

+Act(fsm);

Stop Action

+Act(fsm);

Condition

+abstract Test(fsm);

Can See Condition

-negation:bool;
-viewAngle:float;
-viewDistance:float;

+Test(fsm);

Transition

-decision: Condition;
-action: Action;
-targetState: State;

+IsTriggered(fsm):bool;
+GetTargetState():State;
+GetAction():Action;

Finite State Machine

+initialState: State;
-currentState: State;

-Start();
-Update();
-DoActions(actions);

1 1.* 1.*1

1

1.*

1

1

1

1.*

Class Diagram

Unity – ScriptableObject

• In Unity, a ScriptableObject is a class that allows you to store
data and execute code independent from script instances.
They can also be used to create pluggable data sets.
– They work like the MonoBehaviour class, but they don’t need to be

attached to GameObjects.

• Once a ScriptableObject-derived class have been defined, is
possible to use the CreateAssetMenu attribute to make it easy
to create custom assets of the class.

Unity – ScriptableObject

• ScriptableObjects allow us to create a pluggable finite state
machine system.

Action Classes

• Action Class:

• Patrol Action Class:

public abstract class Action : ScriptableObject

{

public abstract void Act(FiniteStateMachine fsm);

}

[CreateAssetMenu(menuName = "Finite State Machine

/Actions/Patrol")]

public class PatrolAction : Action

{

public override void Act(FiniteStateMachine fsm)

{

if (fsm.GetNavMeshAgent().IsAtDestionation())

fsm.GetNavMeshAgent().GoToNextWaypoint();

}

}

Action

+abstract Act(fsm);

Patrol Action

+Act(fsm);

Action Classes

• Chase Action Class:

• Stop Action Class:

[CreateAssetMenu(menuName = "Finite State Machine/Actions/Chase")]

public class ChaseAction : Action

{

public override void Act(FiniteStateMachine fsm)

{

if (fsm.GetNavMeshAgent().IsAtDestionation())

fsm.GetNavMeshAgent().GoToTarget();

}

}

[CreateAssetMenu(menuName = "Finite State Machine/Actions/Stop")]

public class StopAction : Action{

public override void Act(FiniteStateMachine fsm)

{

fsm.GetNavMeshAgent().StopAgent();

}

}

Action Classes

• Attack Action Class:

[CreateAssetMenu(menuName = "Finite State Machine/Actions/Attack")]

public class AttackAction : Action {

public GameObject shootPrefab;

public float shootTimeInverval = 2;

private float shootTime = float.PositiveInfinity;

public override void Act(FiniteStateMachine fsm)

{

shootTime += Time.deltaTime;

if (shootTime > shootTimeInverval){

shootTime = 0;

GameObject bullet = Instantiate(shootPrefab,

fsm.transform.position, fsm.transform.rotation);

bullet.GetComponent<Rigidbody>().velocity =

fsm.transform.TransformDirection(Vector3.forward * 10);

}

}

}

Action Classes

• Condition Class:

• Can See Condition Class:

public abstract class Condition : ScriptableObject

{

public abstract bool Test(FiniteStateMachine fsm);

}

[CreateAssetMenu(menuName = "Finite State Machine

/Conditions/Can See")]

public class CanSeeCondition : Condition {

[SerializeField]

private bool negation;

[SerializeField]

private float viewAngle;

[SerializeField]

private float viewDistance;

...

Condition

+abstract Test(fsm);

Can See Condition

-negation:bool;
-viewAngle:float;
-viewDistance:float;

+Test(fsm);

Condition Classes

...

public override bool Test(FiniteStateMachine fsm){

Transform target = fsm.GetNavMeshAgent().target;

Vector3 targetDir = target.position - fsm.transform.position;

float angle = Vector3.Angle(targetDir, fsm.transform.forward);

float dist = Vector3.Distance(target.position,

fsm.transform.position);

if ((angle < viewAngle) && (dist < viewDistance)){

if (negation)

return false;

else

return true;

}else{

if (negation)

return true;

else

return false;

}

}

}

Transition Class

[CreateAssetMenu(menuName = "Finite State Machine

/Transition")]

public class Transition : ScriptableObject{

[SerializeField]

private Condition decision;

[SerializeField]

private Action action;

[SerializeField]

private State targetState;

public bool IsTriggered(FiniteStateMachine fsm){

return decision.Test(fsm);

}

public State GetTargetState(){

return targetState;

}

public Action GetAction(){

return action;

}

}

Transition

-decision: Condition;
-action: Action;
-targetState: State;

+IsTriggered(fsm):bool;
+GetTargetState():State;
+GetAction():Action;

State Class
[CreateAssetMenu(menuName = "Finite State Machine/State")]

public class State : ScriptableObject{

[SerializeField]

private Action entryAction;

[SerializeField]

private Action[] stateActions;

[SerializeField]

private Action exitAction;

[SerializeField]

private Transition[] transitions;

public Action[] GetActions(){

return stateActions;

}

public Action GetEntryAction(){

return entryAction;

}

public Action GetExitAction(){

return exitAction;

}

public Transition[] GetTransitions(){

return transitions;

}

}

State

-entryAction: Action;
-stateActions: Action[];
-exitAction: Action;
-transitions: Transition[];

+GetActions():Action[];
+GetEntryAction():Action;
+GetExitAction():Action;
+GetTransitions():Transition[];

Finite State Machine Class

public class FiniteStateMachine : MonoBehaviour {

public State initialState;

private State currentState;

private MyNavMeshAgent navMeshAgent;

void Start(){

currentState = initialState;

navMeshAgent = GetComponent<MyNavMeshAgent>();

}

void Update(){

Transition triggeredTransition = null;

foreach (Transition t in currentState.GetTransitions()){

if (t.IsTriggered(this)){

triggeredTransition = t;

break;

}

}

...

Finite State Machine

+initialState: State;
-currentState: State;

-Start();
-Update();
-DoActions(actions);

Finite State Machine Class
List<Action> actions = new List<Action>();

if (triggeredTransition){

State targetState = triggeredTransition.GetTargetState();

actions.Add(currentState.GetExitAction());

actions.Add(triggeredTransition.GetAction());

actions.Add(targetState.GetEntryAction());

currentState = targetState;

}

else{

foreach (Action a in currentState.GetActions())

actions.Add(a);

}

DoActions(actions);

}

void DoActions(List<Action> actions){

foreach (Action a in actions){

if (a != null)

a.Act(this);

}

}

}

Nav Mesh Agent

public class MyNavMeshAgent : MonoBehaviour {

public Transform target;

public Transform[] waypoints;

private int currentWaypoint;

private NavMeshAgent agent;

void Start(){

currentWaypoint = 0;

agent = GetComponent<NavMeshAgent>();

}

public void GoToNextWaypoint(){

agent.destination = waypoints[currentWaypoint].position;

currentWaypoint++;

if (currentWaypoint >= waypoints.Length)

currentWaypoint = 0;

}

...

Nav Mesh Agent

public void GoToTarget(){

agent.destination = target.position;

}

public void StopAgent(){

agent.isStopped = true;

agent.ResetPath();

}

public bool IsAtDestionation(){

if (!agent.pathPending){

if (agent.remainingDistance <= agent.stoppingDistance){

if (!agent.hasPath || agent.velocity.sqrMagnitude == 0f){

return true;

}

}

}

return false;

}

}

Finite State Machine – Objects

• States:

• Actions:

Finite State Machine – Objects

• Transitions:

• Conditions:

Class-Based Finite State Machines

• The class-based approach gives a lot of flexibility to the Finite
States Machines, but reduces its performance due to the large
number of method calls.

• Another alternative: Script-Based Finite States Machines
– Scripting languages: Lua, Pawn, GameMonkey, ...

– Allows designers to create the state machine rules but can be slightly
more efficient.

– However, interpreting a script is at least as time consuming as
executing a large number of method calls.

Exercise 2

2) Implement the AI of an NPC using the following finite state
machine and the pluggable FSM system:

Search Attack

Run Away

[found the player]

[player died or run away]

[en
ergy is lo

w
]

Recover
Energy

[escaped and energy is low]

[en
ergy is h

igh
]

[en
ergy is lo

w
]

Finite State Machines

• On its own, a state machine is a powerful tool, but as the
complexity of agent behavior increases, the state machine can
grow uncontrollably.
– Even the visual representation becomes complex.

– It can also be difficult to express composed behaviors (e.g. a recharge
behavior that can occur at any state).

Hierarchical State Machines

• Solution to reduce the complexity of the finite state machines:
Hierarchical State Machines
– Rather than combining all the logic into a single state machine, we can

separate it into several state machines arranged in a hierarchy.

Hierarchical State Machines

• While high level states represent abstract actions, low level
states represent concrete actions.

Further Reading

• Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett
Learning. ISBN: 978-1-55622-078-4.

– Chapter 2: State-Driven Agent Design

• Millington, I., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.).
CRC Press. ISBN: 978-0123747310.

– Chapter 5.3: State Machines

• Web:
• https://unity3d.com/pt/learn/tutorials/topics/navigation/

finite-state-ai-delegate-pattern

https://unity3d.com/pt/learn/tutorials/topics/navigation/finite-state-ai-delegate-pattern

