Artificial Intelligence

Lecture 03 — Finite State Machines

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

Game Al — Model

Pathfinding | |
Al gets given processor time
Steering behaviours _ Execution management
gets its
Finite state machineg}— IR | _Group A
. = »| Strategy
Automated planning =
. E __Character Al
Behaviour trees 2L Decision making
Randomness = P —

Sensor systems)
Animation || Physics

Machine learning

Al gets turned into on-screen action

Decision Making

In game Al, decision making is the ability
of a character/agent to decide what to
do.

The agent processes a set of information

that it uses to generate an action thatit B ese

wants to carry out.
— Input: agent’s knowledge about the world;
— Output: an action request;

Decision Making

* The knowledge can be broken down into external and
internal knowledge.

— External knowledge: information about the game environment (e.g.
characters’ positions, level layout, noise direction).

— Internal knowledge: information about the character’s internal state
(e.g. health, goals, last actions).

Internal knowledge

Internal changes
=} /
Action

request
Decision maker

4)

External knowledge External changes

Finite State Machines

* Usually, game characters have a limited set of possible
behaviors. They carry on doing the same thing until some
event or influence makes them change.

— Example: a guard will stand at its post until it notices the player, then it
will switch into attack mode, taking cover and firing.

* State machines are the technique most often used for this
kind of decision making process in games.

e What s a state machine?

Finite State Machines

[See small enemy] | Fight]
L

Run Away

Actions or behaviors are associated
with each state.

On Guard

Each transition leads from one state
to another, and each has a set of
associated conditions.

[luby Buiso]

-

When the conditions of a transition
are met, then the character changes
state to the transition’s target state.

Each character is controlled by one
state machine and they have a
current state.

Hard-Coded Finite State Machines

enum State {PATROL, DEFEND, SLEEP};
State myState;

function update() {

if (myState == PATROL) {
if (canSeePlayer())
myState = DEFEND;
if (tired())
myState = SLEEP;
}
elseif (myState == DEFEND) {

if not canSeePlayer ()
myState = PATROL;
}
elseif (myState == SLEEP) {
if (not tired())
myState = PATROL;

Exercise 1

1) Implement a hard-coded finite state machine to control an
NPC based on the following diagram:

N [can see the player]

A 4

Patrol Chase

A

J [can’t see the player]

n
»

Hints:

* Use the pathfinding maze created
in last lecture as the base project.

e Create a list of waypoints to define
the patrol areas.

ui Jou si s9Ae|d]
[@3ueu yoene
ay3 ui si J9Ae|d]

»i
<

Attack

—\ [28ueiydoeneayl ,

Hard-Coded Finite State Machines

* Although hard-coded state machines are easy to write and are
very fast, they are notoriously difficult to maintain.

 Complex finite states machines require thousands of lines of
code.

* Another weaknesses:

— Programmers are responsible for writing the Al behaviors of each
character.

— The game has to be recompiled each time the behavior changes.

Class-Based Finite State Machines

class StateMachine({

private List<State> states;
private State initialState;
private State currentState = initialState;

List<Action> update () {

triggeredTransition = Transition.None;
for each Transition t in currentState.getTransitions/() {
if (t.isTriggered()) {
triggeredTransition = t;
break;

Class-Based Finite State Machines

if

{

}

else

{

re

(triggeredTransition)

targetState = triggeredTransition.getTargetState ()

List<Action> actions = new List<Action> () ;
actions.Add (currentState.getExitAction());
actions.Add(triggeredTransition.getAction()) ;
actions.Add (targetState.getEntryAction())
currentState = targetState;

return actions;

turn currentState.getAction();

Unity — Implementation

»
<

~ [can see the player]
[Patrol Chase

—

J [can’t see the player]

n
»

ui 10ou si Js9Ae|d]
[98ued yoene
Y3 ui s1 uAe|d]

»
l

Attack

—\ [98uesyoeneasyy

—

Finite State Machine

+initialState: State;
-currentState: State;

1 1.*

Class Diagram

State

-Start();
-Update();
-DoActions(actions);

-entryAction: Action;

1.*

Transition

-stateActions: Action[];
-exitAction: Action;
-transitions: Transition[];

+GetActions():Action[];
+GetEntryAction():Action;
+GetExitAction():Action;
+GetTransitions():Transition[];

1
1.*
Action 1
+abstract Act(fsm);
/\
Patrol Action Chase Action Attack Action Stop Action
+Act(fsm); +Act(fsm); +Act(fsm); +Act(fsm);

-decision: Condition;
-action: Action;
-targetState: State;

+IsTriggered(fsm):bool;
+GetTargetState():State;
+GetAction():Action;

1

1.*

Condition

+abstract Test(fsm);

JAN

Can See Condition

-negation:bool;
-viewAngle:float;
-viewDistance:float;

+Test(fsm);

Unity — ScriptableObject

* In Unity, a ScriptableObject is a class that allows you to store
data and execute code independent from script instances.
They can also be used to create pluggable data sets.

— They work like the MonoBehaviour class, but they don’t need to be
attached to GameObjects.

* Once a ScriptableObject-derived class have been defined, is
possible to use the CreateAssetMenu attribute to make it easy
to create custom assets of the class.

Finite State Machine 3 Actions 5
Folder Conditions ¥
State

C# Script -
Create d crp Transition

Show in Explorer Shader *
Open Testing ¥ ‘

Delete Playables ¥

Unity — ScriptableObject

* ScriptableObjects allow us to create a pluggable finite state
machine system.

v 5 Assets 'Inspector| I Lighting Services Mavigation @ .=

¥ & FSM Patrol State #,
%Actiuns @ | open |

& Conditions
Script State @

& Scripts

Entry Action ‘None (Action) o

ﬁTransitiuns Attack State Chase State Patrol State ¥ State Actions
Size |1 |
Element O | Patrol Action (PatrolAction) | @
Exit Action |ﬂ5tup Action {StupPathMuved @

¥ Transitions

Size |1 |
Elerment O EPatruI Transition (Transition| @
¥ 5 Assets -Inspectur| = Lighting Services Mavigation g .=

¥ &5 FSM — =
E5 Actions Patrol Transition @
&5 Conditions E@ | open |

&3 Scripts _ E—
&5 States Script Transition @

Attack Transition Chase Transition 1 Chase Transition 2 0 200 0p L) Decision |ECan See Condition |:Can535| o]
Action 'None (Action) o
Target State |ﬂChase State (State) | @

Action Classes

e Action Class:

public abstract class Action : ScriptableObject
{

public abstract void Act (FiniteStateMachine fsm);

 Patrol Action Class:

[CreateAssetMenu (menuName = "Finite State Machine
/Actions/Patrol")]
public class PatrolAction : Action

{

public override void Act (FiniteStateMachine fsm)
{
1if (fsm.GetNavMeshAgent () .IsAtDestionation())
fsm.GetNavMeshAgent () .GoToNextWaypoint () ;

Action

+abstract Act(fsm);

/\

Patrol Action

+Act(fsm);

Action Classes

 Chase Action Class:

[CreateAssetMenu (menuName = "Finite State Machine/Actions/Chase")]
public class ChaseAction : Action

{

public override void Act (FiniteStateMachine fsm)
{
1if (fsm.GetNavMeshAgent () .IsAtDestionation())
fsm.GetNavMeshAgent () .GoToTarget () ;

e Stop Action Class:

[CreateAssetMenu (menuName = "Finite State Machine/Actions/Stop")]
public class StopAction : Actionf{
public override void Act (FiniteStateMachine fsm)

{
fsm.GetNavMeshAgent () . StopAgent () ;

Action Classes

e Attack Action Class:

[CreateAssetMenu (menuName = "Finite State Machine/Actions/Attack")]
public class AttackAction : Action {

public GameObject shootPrefab;

public float shootTimelnverval = 2;

private float shootTime = float.PositiveInfinity;

public override void Act (FiniteStateMachine fsm)
{
shootTime += Time.deltaTime;
i1f (shootTime > shootTimeInverval) {
shootTime = 0O;
GameObject bullet = Instantiate(shootPrefab,
fsm.transform.position, fsm.transform.rotation);
bullet.GetComponent<Rigidbody> () .velocity =
fsm.transform.TransformDirection (Vector3.forward * 10);

Action Classes

e Condition Class:

public abstract class Condition : ScriptableObject
{

public abstract bool Test (FiniteStateMachine fsm); Condition

+abstract Test(fsm);

e Can See Condition Class: {5
[CreateAssetMenu (menuName = "Finite State Machine Can See Condition
/Conditions/Can See")]

public class CanSeeCondition : Condition { _negation:bool;
[SerializeField] -viewAngle:float;
private bool negation; -viewDistance:float;
[SerializeField]
private float viewAngle; +Test(fsm);
[SerializeField]

private float viewDistance;

Condition Classes

public override bool Test (FiniteStateMachine fsm) {
Transform target = fsm.GetNavMeshAgent () .target;
Vector3 targetDir = target.position - fsm.transform.position;
float angle = Vector3.Angle (targetDir, fsm.transform.forward);
float dist = Vector3.Distance (target.position,
fsm.transform.position);
if ((angle < viewAngle) && (dist < viewDistance)) {
if (negation)
return false;
else
return true;
}else{
1f (negation)
return true;
else
return false;

Transition Class

[CreateAssetMenu (menuName = "Finite State Machine
| - {Tran51tlgn")] Transition
public class Transition : ScriptableObject{
[SerializeField] -decision: Condition;
private Condition decision; -action: Action;
[SerializeField] -targetState: State;
private Action action;
(SerializeField] +IsTriggered(fsm):bool;
private State targetState; :g:t;itcgis:j;iii);it-ate;
public bool IsTriggered (FiniteStateMachine fsm) { ' '

return decision.Test (fsm) ;

}
public State GetTargetState () {

return targetState;

}
public Action GetAction () {

return action;

State Class

[CreateAssetMenu (menuName = "Finite State Machine/State")]

public class State : ScriptableObject{

[SerializeField]

private Action entryAction;

[SerializeField]

private Action[] stateActions;

[SerializeField]

private Action exitAction;

[SerializeField]

private Transition[] transitions;

public Action[] GetActions() {
return stateActions;

}

public Action GetEntryAction () {
return entryAction;

}

public Action GetExitAction() {
return exitAction;

}

public Transition[] GetTransitions() {
return transitions;

State

-entryAction: Action;
-stateActions: Action[];
-exitAction: Action;
-transitions: Transition[];

+GetActions():Action[];
+GetEntryAction():Action;
+GetExitAction():Action;
+GetTransitions():Transition[];

Finite State Machine Class

public class FiniteStateMachine : MonoBehaviour ({ Finite State Machine

public State initialState;

private State currentState; +initialState: State;

private MyNavMeshAgent navMeshAgent; -currentState: State;

void Start () { fﬁ??;'
currentState = initialState; “Update();

-DoActions(actions);

navMeshAgent = GetComponent<MyNavMeshAgent> () ;

void Update () {

Transition triggeredTransition = null;
foreach (Transition t 1in currentState.GetTransitions()) {
1f (t.IsTriggered(this)) {
triggeredTransition = t;

break;

Finite State Machine Class

List<Action> actions = new List<Action>();
if (triggeredTransition) {
State targetState = triggeredTransition.GetTargetState();
actions.Add (currentState.GetExitAction());
actions.Add (triggeredTransition.GetAction()) ;
actions.Add (targetState.GetEntryAction());
currentState = targetState;
}
else{
foreach (Action a in currentState.GetActions())
actions.Add(a) ;
}
DoActions (actions) ;
}
void DoActions (List<Action> actions) {
foreach (Action a in actions) {
if (a != null)
a.Act (this);

Nav Mesh Agent

public class MyNavMeshAgent : MonoBehaviour ({
public Transform target;
public Transform[] waypolnts;
private int currentWaypoint;
private NavMeshAgent agent;

void Start () {
currentWaypoint = 0;
agent = GetComponent<NavMeshAgent> () ;

public void GoToNextWaypoint () {
agent.destination = waypoilnts[currentWaypoint] .position;
currentWaypoint++;
1f (currentWaypoint >= waypoints.Length)
currentWaypoint = 0;

Nav Mesh Agent

public void GoToTarget () {
agent.destination = target.position;

public void StopAgent () {
agent.isStopped = true;
agent.ResetPath () ;

public bool IsAtDestionation () {
if (!agent.pathPending) {
if (agent.remainingDistance <= agent.stoppingDistance) {
if (!agent.hasPath || agent.velocity.sgrMagnitude == 0f) {
return true;

}

return false;

Finite State Machine — Objects

* States:

e Actions:

Finite State Machine — Objects

* Transitions:

e Conditions:

Class-Based Finite State Machines

* The class-based approach gives a lot of flexibility to the Finite

States Machines, but reduces its performance due to the large
number of method calls.

e Another alternative: Script-Based Finite States Machines
— Scripting languages: Lua, Pawn, GameMonkey, ...

— Allows designers to create the state machine rules but can be slightly
more efficient.

— However, interpreting a script is at least as time consuming as
executing a large number of method calls.

Exercise 2

Implement the Al of an NPC using the following finite state
machine and the pluggable FSM system:

A [found the player] 4

A 4

Search Attack

»

)‘ [player died or run away] _

[mo| s1 Auau3]
[yS1y st A3uaua]

[mo| s1 ASusu?d]

Recover][escaped and energy is low]
Energy J‘

L Run Away

Finite State Machines

* Onits own, a state machine is a powerful tool, but as the
complexity of agent behavior increases, the state machine can
grow uncontrollably.

— Even the visual representation becomes complex.

— It can also be difficult to express composed behaviors (e.g. a recharge
behavior that can occur at any state).

[Seen trash] Head for
- trash

Get power
(head for

Get power
(search)

Search

Get power
(head for
compactor)

[way 109)]

[Got item]

Head for
compactor

Head for
compactor

Hierarchical State Machines

Solution to reduce the complexity of the finite state machines:

Hierarchical State Machines
— Rather than combining all the logic into a single state machine, we can
separate it into several state machines arranged in a hierarchy.

[No trash found]

4 Clean up

Y

Seam [Head for I
J [Seen trash] . trash [Recharged] (" Get power
‘ [No power] .
Head for
compactor

[Got item]

i
-

Hierarchical State Machines

* While high level states represent abstract actions, low level
states represent concrete actions.

State A
State B Abstract Refined
a b
Ecmm In
ZGEJIT‘I Out
State C
Entry Point

Nested States Hierarchy Tree

Further Reading

* Buckland, M. (2004). Programming Game Al by Example. Jones & Bartlett
Learning. ISBN: 978-1-55622-078-4.

— Chapter 2: State-Driven Agent Design

Progmmmind |
Game] | Example

XL Mot Bucklond

* Millington, I., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.).
CRC Press. ISBN: 978-0123747310.

INTELLIGENCE

AREL":lCIAL
FOR GAMES :.co.c oo

— Chapter 5.3: State Machines

e Web:
* https://unity3d.com/pt/learn/tutorials/topics/navigation/
finite-state-ai-delegate-pattern

IAN MILLINGTON - JOHN FUNGE @252

https://unity3d.com/pt/learn/tutorials/topics/navigation/finite-state-ai-delegate-pattern

