Artificial Intelligence

Lecture 02 - Pathfinding

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

Game Al — Model

Pathfinding |- | |
Al gets given processor time
Steering behaviours _ Execution management
gets its
Finite state machines " | o A
. < Strategy

Automated planning <

. E __Character Al
Behaviour trees 2 Decision maKing

oo

Randomness = Movement

Sensor systems)
Animation || Physics

Machine learning

Al gets turned into on-screen action

Pathfinding

* Game characters usually need to move around their level.

* While simple movements can be manually defined by game
developers (patrol routes or wander regions), more complex
movements must be computed during the game.

Pathfinding

* Finding a path seems obvious and natural in real life. But how
a computer controlled character can do that?

Ooooooo

— The computer needs to find the “best” path and do it in real-time.

Search Problem

Pathfinding is a search problem: find a sequence of actions
from an initial state to an goal state.

Problem definition:
— Initial state

— Goal state

— State space

— Set of actions

— Cost functions

Search Problem

The process of looking for a sequence of actions that reaches
the goal is called search.

Once a solution is found, the actions it recommends can be
carried out.

Phases:

— Goal formulation
— Search

— Execution

Examples of Search Problems

* Route-finding:

— State space: map;

— Initial state: current city;

— Goal state: destination city;

— Set of actions: go from one city to another (only possible if there is a
path between the cities);

— Action cost: distance between the cities;

Examples of Search Problems

Vacuum world:

1 AEQ 2 E&
— State space: agent location and the dirt g8 | B FR | BB
locations (8 possible states);
3 A 4 A
7R oFR
— Initial state: any state;
5 A 6 5&
Lo L
— Goal state: all locations clean (state 7
or 8); 7 |t 8 =)

— Set of actions: move left, move right,
and suck;

— Action cost: 1 per action;

Examples of Search Problems

8-Puzzle Game:

State space: 181.440 possible states;

Initial state: any state;

Goal state: Goal State in the figure;

Set of actions: move the blank space left,
right, up, or down;

Action cost: 1 per action;

15-puzzle (4x4) — 1.3 trillion possible states.
24-puzzle (5x5) — 10% possible states.

7 2 4

5 6

8 3 I
Start State

I 2

3 2 5

6 7 8

Goal State

Examples of Search Problems

e Chess Game:

— State space: approximately 10%° possible EﬁEEEaE
states; H BB B
-I.III.I

— Initial state: start position of a chess game; H B R B
ABRABABAL
BONEWE ¢ R

— Goal state: any checkmate state;

o0 & W

o . N EiN
— Set of actions: pieces movement rules; i ™ & T
el .I-E.I -

— Action cost: examined states; HBAE B B
ANAN N2

HE B B

General Pathfinding Problems

State space: waypoint graphs or
tiled-based maps; .-.

Initial state: current location (A);

Goal state: destination location (B);

Set of actions: movements;

Action cost: distance or terrain
difficulty;

Navigation Graph

* Pathfinding algorithms can’t work directly on the level
geometry. They rely on a simplified version of the level,
usually represented in the form of a graph.

Exercise 1

1) Create a maze in Unity. This maze will be used to test the
pathfinding algorithms. Example:

General Graph Structure

* G=(V, E) e
— G: graph; l

— V: set of vertices;

— E: set of edges;

Vertex

General Graph Structure

* Directed graph: a graph in which edges have orientations.

General Graph Structure

* Weighted graph: directed on undirected graph in which a
number (the weight) is assigned to each edge.

Navigation Graph

 Asimplified version of the game level can be represented in
the form of a graph.

Navigation Graph

* Tiled-based maps can also be seen as graphs:

memory data:

0000111
0000111
1001001
1100000

Graph — Representation

* Adjacency list:
— Uses a vector or list Adj with |V| adjacency lists, one for each
vertexv e V.

— For each u €V, Adj[u] contain references for all vertices v such
that (u, v) € A. That is, Adj[u] contains all adjacency vertices of u.

Adj
——{ 2 [F—4]\]
——{ 5[]

——{ 5 [F—[6]\]

.
\\/
T e W
.
(X NS - B TR N Y
||
—

Graph — Representation

* Adjacency matrix:

— Given a graph G = (V, E), we assume that vertices are labeled with
numbers 1, 2,..., |V]|.

— The adjacency matrix is a matrix A; of dimensions V| x [V],
where:

0 otherwise

Aijz{ 1if (i,)) € A

1 2 3 4 5 6
1
7N N N ojtjojtjojo
1 2 (3] 2
N4 N \ 0|00 |0O0O]1]0
3lolo]o]o]1]1
41o0l1l0l0]0]o0
N - ~
| 4 /ZH—E\ 5)] [(6) 5/ololo|1]olo
o o 'Z’/ — \.I 6 0 0 0 0 0 1
\ /

Graph Representation in Unity

* We can easily create an adjacency list by implementing a class
to represent the edges of the graph (called waypoints in the
navigation graph). Each waypoint is connect with a set of
other waypoints (edges):

public class Waypoint : MonoBehaviour {
public Waypoint[] edges;
}

e We also need another class to store a reference to all the
vertices of the graph (waypoints):

public class Pathfinding : MonoBehaviour ({
public Waypoint[] waypoilnts;
}

Graph Representation in Unity

* A waypoint also have a position in the world. But instead of
adding this information to the waypoint class, a better
solution is to associate the class with a game object (such a
sphere) and then create a prefab.

tatic *
Tag l gggggggg #J Layer [DDDDDDD #J
YA T form &,
oooooooo | Ivo |z]
Rotat x[0 o |Z[o |
Scal 05 v (0.5 |2[os |
¥ .. Sphere (Mesh Filter) i,
Mesh |uSphere | @
¥ ¥ sphere Collider £,
| £ | Edit Collider
Is Trigger -
Material |Nor‘|e (Physic Material) | @
eeeeee x/0 v [o |z[o |
Radius |0.5 |
hla:.rp:lint ¥ | [¥Mesh Renderer &,
¥ Lighting
b Material
Dynamic Occluded [+
v(e Waypoint (Script) £,
Script Waypoint @
¥ Edges
i | |
Waypoint #,

Shader | Standard 3

Graph Representation in Unity

* Now we can place waypoints in the game level and then
connect them.

8 Inspector

W 'we (12) | [] static =
Tag | Untagged i| Layer | Default &l
Prefab | Select [Revert [Apply |
¥ .~ Transform 2l %,
Position X 0.32 ¥ 0.712 |2 -4.38
Rotation X0 ¥ 0 |20 |
Scale x[0.5 | (0.5 |Z0.5 |
¥ .. Sphere (Mesh Filter) =
Mesh |_H5phere | &
F“HSphere Collider £,
Edit Collider
Is Trigger -
Material |None (Physic Material) | o]
Center x[0 [v 0 [zo |
Radius (0.5 |
¥ .. [¥Mesh Renderer L2 %
b Lighting
b Materials
Dynamic Oceluded [
¥|z Waypoint (Script) g #
Script Waypoint o]
Size (2
Element 0 |- WP (13) (Waypoint) | @
Element 1 |- WP (10) (Waypoint) | @

\

Graph Representation in Unity

* To better visualize the connections, we can uses gizmos to
draw lines between connected waypoints.

public class Waypoint : MonoBehaviour ({
public Waypoint[] edges;

vold OnDrawGizmos ()

{
Gizmos.color = Color.green;
foreach (Waypoint e in edges)

{

Gizmos.DrawlLine (transform.position,

e.gameObject.transform.position) ;

Exercise 2

2) Place waypoints in the visibility points of the maze created in
the previous exercise. Then, connect all the waypoints to

create the navigation graph.

© Inspector [Lighting 1 Sefvices TE R

2]

a 4 |PathfindingManager | || Static =
Tag | Untagged +| Layer
¥ .~ Transform [%
Position ¥ -8.06486 ¥ [-16.7106] Z |6.679224
Rotation 0 |v o 'Zlo |
Scale X1 | [1 |z [1 |
¥|@ Pathfinding (Script) ##,
Script Pathfinding o
¥ Waypoints
Size 15 |
Element 0O [WP (D) (Waypoint)]
Element 1 - WP (1) (Waypoint))
Element 2 = WP (2) (Waypeint) @
Element 3 WP (2) (Waypeoint) @
Element 4 = WP (4) (Waypoint)
Element 5 WP (5) (Waypoint)
Element & - WP (&) (Waypoint)
Element 7 [WP (7) (Waypoint) |
Element 8 - WP (B) (Waypoint)]
Element @ [WP (9) (Waypoint) [N
Element 10 [WP (10) (Waypoint) |
Element 11 = WP (11) (Waypoint) |
Element 12 - WP (12) (Waypoint) |
Elernent 13 - WP (13) (Waypoint) |
|

Element 14 [WP (14) (Waypoint)

Pathfinding

Now that we have the navigation graph, how can we find the
best path to go from one waypoint to another?

There are many graph search algorithms:
— Breadth-first search (BFS)
— Depth-first search (DFS)
— Dijkstra algorithm
— A* algorithm

Which algorithm is the best?

Breadth-first Search (BFS)

* Strategy:

— |t starts at the root vertex (any arbitrary vertex of the graph) and
explores the neighbor nodes first, before moving to the next level of
neighbors.

Graph: Search Tree:

* Complexity: O(b*™)

Breadth-first Search (BFS)

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
§] 106 .1 seconds 1 gigabyte
8 10% 2 minutes 103 gigabytes
10 1019 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 1014 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

* Considering a ramification factor b = 10, each node using 1KB of memory, and a

processor capable of processing 1 million nodes per second.

Depth-first Search (DFS)

* Strategy:

— |t starts at the root vertex (any arbitrary vertex of the graph) and
explores as far as possible along each branch before backtracking.

Graph: Search Tree:

®» O >
) © O © ©
O O—- oo

ONENO @ OO

Depth-first Search (DFS)

Consumes less memory than the BFS: once a node has been
expanded, it can be removed from memory as soon as all its
descendants have been fully explored.

In the previous example, at depth d = 16, DFS would require
only 156 KB of memory (instead of 10 exabytes).

Problem: the algorithm may perform long searches when the
solution is simple (when the goal is close to the root vertex).

Dijkstra Algorithm

* Strategy:

— |t starts at the root vertex (any arbitrary vertex of the graph) and
explores the neighbor nodes with the lowest path cost.

Graph: Search Tree:

118

Dijkstra Algorithm

* The first solution found is always the optimal solution (only if
there are no negative costs).

 When all step costs are the same, Dijkstra search is similar to
breadth-first search.

* Dijkstra is better than BFS and DFS algorithms, but it still
searches the entire graph indiscriminately for the shortest
possible route (it doesn't takes into consideration the
objective).

A* Algorithm

* Strategy:
— Combines the path cost g(n) with an heuristic value h(n);
— g(n) = path cost from the start node to node n;

— h(n) = estimated cost of the cheapest path from n to the goal (e.g.
straight line distance);

— The evaluation of a node is given by: f(n) = g(n) + h(n);

e Pathfinding in games is synonymous with the A* algorithm.
Almost every pathfinding system uses some variation of the
A* algorithm.

A* Algorithm

[]Cradea

Sibiu

g9 Fagaras

[Timissoara] [Zerind]
18+329=447 75+374=449

Eforie

[Fagaras] [Oradea] [Rimnicu Vilcea]

280+366=646 23 '6=415 291+380=671 22 <413 Arad 366 Mehadia a1

Bucharest | O Neamt 234

[Sibiu] [Bucharest] [Craiova] [Pitesti] [Sibiu] Craiova 160 | Oradea 380

338+253=591 450+0=450 366+160=526 3 =417 300+253=553 Drobeta 242 Pitesti 100
Eforie 161 | Rimnicu Vilcea | 193

[Bucharest] [Craiova] [Rimnicu Vilcea] Fagaras 176 | Sibiu 253

418+0=418 455+160=615 414+193=607 Giurgiu 77 Timisoara 329

lasi 226 | Vaslui 199

Lugoj 244 | Zerind 374

Hirsova 151 | Urziceni 80

A* Algorithm

 The A* algorithm is complete and optimal.

* Complexity: is exponential in the depth of the solution (the
shortest path) — O(b9) , but the heuristic function has a major
effect on the practical performance of the algorithm. A good
heuristic prunes away many of the b? nodes.

* No other algorithm guarantees to expand less nodes than the
A* algorithm.

A* Algorithm — Pseudocode

function A* (start, goal)

closedSet := {};

openSet := {start}; //priority queue structure
camelrom := an empty map;

gScore := map with default value of Infinity;
gScore[start] := 0;

fScore := map with default value of Infinity;

fScore[start] := heuristic cost estimate(start, goal);

A* Algorithm — Pseudocode

while openSet is not empty do
current := the node in openSet having the lowest fScore[] value;
if current = goal then
return reconstruct path (cameFrom, current);
openSet.Remove (current) ;
closedSet.Add (current) ;
for each neighbor of current do
if neighbor in closedSet then
continue;
if neighbor not in openSet then
openSet.Add (neighbor) ;
tentative gScore := gScore[current] + dist between (current,
neighbor) ;
if tentative gScore >= gScore[neighbor] then
continue;

cameFrom[neighbor] := current;
gScore[neighbor] := tentative gScore;
fScore[neighbor] := gScore[neighbor] +

heuristic cost estimate (neighbor, goal);
return failure;

A* Algorithm — Unity

public List<Waypoint> FindPath (Waypoint start, Waypoint goal) {
List<Waypoint> closedSet = new List<Waypoint> () ;
SimplePriorityQueue<Waypoint> openSet = new
SimplePriorityQueue<Waypoint> () ;
openSet.Enqueue (start, Heuristic(start, goal)):;

Dictionary<Waypolnt, Waypolint> cameFrom = new Dictionary<Waypoint,
Waypoint> () ;

Dictionary<Waypoint, float> gScore = new Dictionary<Waypolint,
float> (),
foreach (Waypoint wp 1n waypolnts)

{
gScore.Add (wp, Mathf.Infinity);

}
gScore[start] = 0;

C# Priority Queue: https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp

https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp

while (openSet.Count > 0) {
Waypoint current = openSet.Dequeue() ;
if (current == goal)
return ReconstructPath (cameFrom, current, start);
closedSet.Add (current) ;
foreach (Waypoint neighbor in current.edges) {
if (closedSet.Contains (neighbor))
continue;
if (!openSet.Contains (neighbor))
openSet.Enqueue (neighbor, gScore[neighbor] +
Heuristic (neighbor, goal));
float tentative gScore = gScorel[current] + Heuristic(current,
neighbor) ;
1f (tentative gScore >= gScore[neighbor])
continue;
cameFrom[neighbor] = current;
gScore[neighbor] = tentative gScore;
openSet.UpdatePriority (neighbor, gScore[neighbor] +
Heuristic (neighbor, goal));

}

return new List<Waypoint> ()

A* Algorithm — Unity

float Heuristic (Waypoint pl, Waypoint p2) {
return Vector3.Distance (pl.gameObject.transform.position,
p2.gameObject.transform.position) ;

List<Waypoint> ReconstructPath (Dictionary<Waypoint,Waypoint> cameFrom,
Waypoint current, Waypoint start) {
List<Waypoint> total path = new List<Waypoint> () ;
total path.Add(current);
while (current != start) {
foreach (Waypoint wp in cameFrom.Keys) {
if (wp == current) {
current = cameFrom[wp];
total path.Add(current);

}

}
total path.Reverse();

return total path;
}

Exercise 3

3) Implement the A* algorithm in the Pathfinding class created
in the previous exercises.

a) Execute the FindPath function and
show the resulting path in the
console;

b) Add parameters to define the start
and goal waypoints;

c) Test the algorithm with different
start and goal waypoints;

o s Wb e

Navigation

Find closest visible node (a) to current location (X);
Find closest visible node (b) to target location (O);
Search for the best path from (a) to (b);

Move to (a);

Follow path to (b);

Move to target location (O);

Exercise 4

4) Add an object (e.g. a capsule) to represent an NPC and then
use the pathfinding algorithm to move the NPC from any
place to any goal destination.

a) Create a function to find the
closest waypoint to use as start
and goal waypoints;

b) Move the NPC slowly though the
computed path;

World Representations

Pathfinding algorithms don’t work directly on the level
geometry. They rely on a simplified world representation.

Most common techniques for world representation:
— Tile Graphs;

— Points of Visibility;

— Finely Grained Graphs;

— Expanded Geometry;

— Navigation Meshes;

Tiled-Based Graphs

* Tile-based levels split the whole world into regular, usually
square, regions (although hexagonal regions are occasionally
seen in some games).

— The whole level can be tiled-based or the tile grid overlays the 3D level;

* Advantages: tile-based graphs are
generated automatically. Easy to estimate
edge’s weights.

* Problems: the search spaces can quickly
become extremely large (a 100x100 map
has 10,000 nodes and 78,000 edges!). If no
path smoothing techniques are applied,
character’s movements will be unnatural.

e le e

Points of Visibility (POV)

* A points of visibility navigation graph is created by placing

* Advantages: easy to implement. Easy to

waypoints at important points in the environment such that
each waypoint has line of sight to at least one other.

— Usually the waypoints are placed by hand (level designer task);

include extra information about
waypoints (e.g. good sniping, cover, or
ambush positions).

Problems: large maps require a lot of
work to place all waypoints manually.
Problematic if the game includes map
generation features. Blind spots problem.

Expanded Geometry

* A POV graph can be automatically generated using the

expanded geometry technique.
a) Expand geometry (by a amount proportional to the bounding radius
of moving agents);
b) Connect all vertices;
c) Remove non-line of sight edges;

D [

Simple Geometry Expanded Geometry The finished POV graph

Finely Grained Graphs

* Poor paths and inaccessible positions can be improved by
increasing the granularity of the navigation graph.

* Advantages: Removes blind spots and
improves path smoothness. Can be
generated automatically using “flood fill”
algorithm.

* Problems: can have similar performance
issues as tiled graphs.

Finely Grained Graphs — Flood Fill

1. Place a seed node somewhere in
the map;

2. Expand the nodes and edges
outward from the seed in each
available direction (e.g. 8
directions), and then the nodes on
the fringe of the graph;

— Check for collisions with the level
geometry;

3. Continue until all the navigable
area is filled.

£33
ayua

ﬂg ->

Path to an Item Type

 What to do when we need a path to an item type (such as a
rocket launcher) that can be found in several locations?

— In this situation, Dijkstra’s algorithm is a better choice.

A Start

ﬁTarget :] :

Path Smoothing

When the navigation graph is in the shape of a grid or when
the path have unnecessary edges, the movements of the
agent may look unnatural.

A Start b - - .
@ Finish

Solution: Path Smoothing

Simple Path Smoothing Algorithm

* Check for the “passability” between adjacent edges. If one of
the edges is superfluous, the two edges are replaced with one.

— “passability” can be checked thought a ray-cast. If we can cast a ray
between A and C then waypoint B is not needed.

/I\ -}
C m c
A A

There is no obstacle obstructing the path from A to Cso
the two edges can be replaced with one.

PPN

A

With an obstacle in the way both edges are necessary

Simple Path Smoothing Algorithm

Grab source E1 (edge);

Grab destination E2 (edge);

E1 E2
If the agent can move between the /'\ -» -~
C R C
A A E

source of E1 and destination of E2;: 1

There is no obstacle obstructing the path from Ato Cso
the two edges can be replaced with one.

— a) Assign the destination of E1 to the
destination of E2;

— b) Remove E2; E1 - E2 _} E1

— c¢) Advance E2; > :
4. If the agent cannot move between the A A

source Of El and deStination Of E2 With an obstacle in the way both edges are necessary

— a) Assign E2 to E1;
— b) Advance E2;

5. Repeat until the destination of E1 or destination of E2 is the endpoint of
the path;

Simple Path Smoothing Algorithm

L]] I L]] I
) p’ A Start | N p A Start |
@® Finish ® Finish
o o o o & . .Ez o o o & .
o« » F B2 0 0w ¢ o\ ooooo
4 5 4 E1l

:_ ,.E‘P.I :_ (...I
SLEW T

o I O

" + | A Start | .
@ Finish

e o o § . ®

® ®

Navigation Mesh

* Tile-based graphs and points of
visibility are useful solutions to
simple problems, but the majority
of modern games use navigation
meshes.

* |t takes advantage of the fact that
the level designer already needs to
specify the way the level is
connected using polygons/triangles.

— Can use level geometry or a new
geometry created specially for
navigation.

Navigation Mesh

* Instead of network of points, a navigation mesh comprises a

network of convex polygons.
— It has more information than waypoints (i.e., the agent can walk

anywhere in the polygon);
— While waypoints require a lot of points, the navigation mesh needs
only few polygons to cover same area.

wd® N

—_

Navigation Mesh

Example 1:

Navigation

Mesh

Navigation Mesh

 Example 2:

Waypoints
Graph

=

¥

Navigation
Mesh

Optimization — Hierarchical Pathfinding

* Hierarchical pathfinding works in a similar way to how humans
move around their environment.
— Typically two hierarchical levels, but can be more.
— First find a path in high-level, then refine in low-level.

High-Level Graph Low-Level Graph

Optimization — Pre-Calculated Paths

* If the game environment is staticand memory usage is not a
problem, a good option to reduce CPU load are pre-calculated
path tables.

AlB|C|D|E
AlA|B|C(B|E
B|A|B(C|D|D
C/lA|B|C|B|B
D B|B(B|D|E
E(A|D D D|E

Optimization — Pre-Calculated Costs

Sometimes it’s necessary for a agent to calculate the cost of
traveling from one place to another. For example, to decide
which is easiest item to get. This can be done with pre-
calculated cost tables.

0 |3.5]1 |3

1 14.5/0

m | QN |XW|>
v DN Jw o
w
un
o
~
U
(@)

U

3 16.5[2

Optimization — Other Techniques

Time-Sliced Pathfinding: allocate a fixed amount of CPU
resources per update step for all the search requests and
distribute these resources evenly between the searches.

— Considerable amount of coding work required!

Store Path Results: save pathfinding results in memory an
reuse then when necessary.

Recompute paths to avoid sticky situations:

oC

iy -) Q
; L= f
®) = e .

@
o
&

Unity Navigation System

* Unity’s Navigation System allows characters to intelligently
move around the game world. The system uses navigation
meshes automatically created from the scene geometry.

 NavMesh — data structure that describes
the walkable surfaces of the game world.

* NavMesh Agent — component to create
moving characters.

e Off-Mesh Link — component that allows
navigation shortcuts (e.g. jumps over
holes, floors, or fences).

 NavMesh Obstacle — component to define
moving obstacles that the agents should

avoid while navigating the world.

NavMeshObstacle —_ /— NavMeshAgent

OffMeshLink

Unity Navigation System

 The process of creating a NavMesh from the level geometry
uses the meshes of all Game Objects that are marked as
Navigation Static, and processes them to create a navigation
mesh that approximates the walkable surfaces of the level.

Navigation window:

— Window -> Navigation

® Inspector It Lighting Services % MNawigation =

Agents | Areas Bake Object

Learn instead about the component workflow.
Baked Agent Size

R =075
H=2z
0.4
| o 450

Agent Radius 0.5

Agent Height

Max Slope . 45
Step Height 0.4

Generated Off Mesh Links

Drop Height 0
Jump Distance 0
b Advanced

I Clear H Bake]

Unity Navigation System

* Creating a basic NavMesh:

— (Step 1): Select the objects that represent walkable surfaces and mark
them as “Static Geometry” and “Walkable” in the Object tab of the

Navigation Window.

— (Step 2): Select the objects that represent not walkable surfaces and
mark them as “Static Geometry” and “Not Walkable” in the Object tab

of the Navigation Window.

Inspector = Lighting Services |Navigatiu| =

[ﬂgents | Areas | Bake Ohject

Scene Filter:

|.‘_’AII | |:iMesh Renderers kg Terrains

Learn instead about the component workflow,

. 'Cube (Mesh Renderer)

Mavigation Static [+
Generate OffMeshLinks [|
Navigation Area | Walkable :]

Inspector =ZLighting Services |Navigatiu|| —

[Lxgents | Areas | Bake Ohject

Scene Filter:

|.ﬂ_'AII | | iMesh Renderers g Terrains

Learn instead about the component warkflow.,
_'Cube (5) (Mesh Renderer)

Mavigation Static [

Generate OffMeshLinks [

MNavigation Area | Mot Walkable

Unity Navigation System

* Creating a basic NavMesh:
— (Step 3): Adjust the bake settings to match the agent properties.

* Agent Radius: defines how close the agent Inspector =Lighting Services | Navigatior | o=
center can get to a wall or a ledge. | Agents | Areas [EEEETE
° Agent HEight: defines hOW IOW the Spaces Learn instead about the component workflow.
Baked Agent Size
are that the agent can reach.
 Max Slope: defines how steep the ramps -

are that the agent walk up. Hez
» Step Height: defines how high obstructions 24 — 45s

are that the agent can step on.

Agent Radius 0.5
Agent Height
. . Max Sl ——— |4 5
— (Step 4): Click bake to build the NavMesh. | L0 —
Generated Off Mesh Links
Drop Height 0
Jump Distance]
b Advanced

Clear H Bake

Unity Navigation System

* The resulting NavMesh will be shown in the scene as a blue
overlay on the underlying level geometry:

Unity Navigation System

* Creating a NavMesh Agent:
— (Step 1): Create an object to represent the agent (e.g. a cylinder).

— (Step 2): Add a NavMesh Agent component to the object (Component
-> Navigation -> NavMesh Agent).

— (Step 3): If necessary, adjust the agent radius to match the object.

¥ [« Nav Mesh Agent i,
Agent Type [Humanaid m
Base Dffset [1 |
Steering
Speed [3.5 |
Angular Speed |12U |
Acceleration [8 |
Stopping Distance |U |
Auto Braking 4
Obstacle Avoidance
Radius [0.5000001 |
Height [2 |
Quality | High Quality m
Priarity |50 |
Path Finding
Auto Traverse Off Mo
Auto Repath [

Area Mask | Everything m

Unity Navigation System

* The NavMesh Agent component handles both the
pathfinding and the movement of the character.

 The simplest way to move the agent towards a destination is
done by setting the desired destination point by script.

public class AgentControl : MonoBehaviour {
public Transform goal;

volid Start () {

NavMeshAgent agent = GetComponent<NavMeshAgent> () ;
agent.destination = goal.position;

}
}

Unity Navigation System

* NavMesh Obstacle components can be used to describe
obstacles the agents should avoid while navigating.

— When an object obstructs the agent path, the Navigation System will
automatically find another path (if there is one).

¥ 4 ¥ Nav Mesh Obstacle g
Shape | Box =
/<\ Center
X0 Yo 'zjo |
Size
X1 RAE |z]1 |
Carve [+

Move Threshold 0.1 |
Time To Statiunar|ﬂ.5 |
Carve Only Statio |«

¥ .4 Rigidbody £,
Mass (1 |
Drag 0 |
Angular Drag 10.05 |
Use Gravity [+
Is Kinematic -
Interpolate | Mane =
Collision Detection | Discrete =

b Constraints

Unity Navigation System

* Off-Mesh Links are used to create paths crossing outside the
walkable navigation mesh surface.

— If the path via the off-mesh link is shorter than via walking along the
NavMesh, the off-mesh link will be used.

Scene L - r':-J © Inspector L B =
Textured 36 i Meear)| [Start | [lstatic +
Tag | Untagged 3 | Layer| Default 4 |
¥ .~ Transform %,
Position X{-5.5 |¥[5.1059 |zfa5 |
Rotation X0 Y0 Z0
Scale X 0.5 Y 0.1 'z 05
b |- Cylinder (Mesh Filter) %,
- ¥ capsule Collider ¥,
> Q@MMI@ %,
v -~ [Moff Mesh &,
Start A Start (Transform) o
End #AEnd (Transform) | ©
Cost Overrid [-1 |
| BiDirectional ™
Activated
Auto Update Positions[_]
Navigation Area | walkable s
marker %,

Shader | Legacy Shaders/Diffuse v || Edit... |

Add Component]

Unity Navigation System

 The Navigation Areas define how difficult it is to walk across a
specific area, the lower cost areas will be preferred during
path finding.

— The cost per area type can be set globally in the Areas tab.

. [Agents | Areas Bake P— Bale | Object]
Scene Filter:
|z\Mesh Renderers ﬁT!rriins — Mame Cost
5 N

Learn instead about the component workflow, g E:::I_:: 2 :Dilt,j:::able |1 |

L-_._‘,l:-ube- (18) (-I\'Iesh Renderer) I Built-in 2 Jump |2 |

MNavigation Static _ o |:| User 3 |Water ||4 |

Generate OffMeshLinks []

Navigation Area | Water il H User 4 I Hl I

User 5 1

[] usere | IE! |
[user7 | |[1 |
I ser & | ||1 |
|:| User 9 | ||1 |
[] user 10 | IR |
[] user 11 | |2 |
[] user 12 | I |
[] user 13 | IR |
=1 r 1T

Exercise 5

5) Modify the scene created in Exercise 4 to use the Unity
Navigation System.

a) Create the navigation mesh;
b) Create an agent;
c) Create a set of destination points;

d) Make the agent move through the "
destination points; '

e) Add different costs to some of the
corridors of the maze.

Further Reading

Buckland, M. (2004). Programming Game Al by Example. Jones & Bartlett
Learning. ISBN: 978-1-55622-078-4.

— Chapter 8: Practical Path Planning

Programming ‘
Game] | Example

EL Mot Bucklond

Millington, 1., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.).

CRC Press. ISBN: 978-0123747310. ARTIFICIAL

INTELLIGENCE
FOR GAMES ::coccomon

— Chapter 4: Pathfinding

IAN MILLINGTON - JOHN FUNGE @S2,

