
Artificial Intelligence

Edirlei Soares de Lima

<edirlei.lima@universidadeeuropeia.pt>

Lecture 02 - Pathfinding



Game AI – Model

• Pathfinding

• Steering behaviours

• Finite state machines

• Automated planning

• Behaviour trees

• Randomness

• Sensor systems

• Machine learning



Pathfinding

• Game characters usually need to move around their level.

• While simple movements can be manually defined by game 
developers (patrol routes or wander regions), more complex 
movements must be computed during the game.



Pathfinding

• Finding a path seems obvious and natural in real life. But how 
a computer controlled character can do that?

– The computer needs to find the “best” path and do it in real-time.



Search Problem

• Pathfinding is a search problem: find a sequence of actions
from an initial state to an goal state.

• Problem definition:
– Initial state

– Goal state

– State space

– Set of actions

– Cost functions



Search Problem

• The process of looking for a sequence of actions that reaches 
the goal is called search.

• Once a solution is found, the actions it recommends can be 
carried out.

• Phases:
– Goal formulation

– Search

– Execution



Examples of Search Problems

• Route-finding:

– State space: map;

– Initial state: current city;

– Goal state: destination city;

– Set of actions: go from one city to another (only possible if there is a 
path between the cities);

– Action cost: distance between the cities;



Examples of Search Problems

• Vacuum world:
– State space: agent location and the dirt 

locations (8 possible states);

– Initial state: any state;

– Goal state: all locations clean (state 7 
or 8);

– Set of actions: move left, move right, 
and suck;

– Action cost: 1 per action;



Examples of Search Problems

• 8-Puzzle Game:
– State space: 181.440 possible states;

– Initial state: any state;

– Goal state: Goal State in the figure;

– Set of actions: move the blank space left, 
right, up, or down;

– Action cost: 1 per action;

15-puzzle (4x4) – 1.3 trillion possible states.
24-puzzle (5x5) – 10²⁵ possible states.



Examples of Search Problems

• Chess Game:
– State space: approximately 1040 possible

states;

– Initial state: start position of a chess game;

– Goal state: any checkmate state;

– Set of actions: pieces movement rules;

– Action cost: examined states;



General Pathfinding Problems

• State space: waypoint graphs or 
tiled-based maps;

• Initial state: current location (A);

• Goal state: destination location (B);

• Set of actions: movements;

• Action cost: distance or terrain 
difficulty;

A

B



Navigation Graph

• Pathfinding algorithms can’t work directly on the level 
geometry. They rely on a simplified version of the level, 
usually represented in the form of a graph.



Exercise 1

1) Create a maze in Unity. This maze will be used to test the 
pathfinding algorithms. Example:



General Graph Structure

• G = (V, E)

– G: graph;

– V: set of vertices;

– E: set of edges;

Vertex

Edge



General Graph Structure

• Directed graph: a graph in which edges have orientations.



General Graph Structure

• Weighted graph: directed on undirected graph in which a 
number (the weight) is assigned to each edge.



Navigation Graph

• A simplified version of the game level can be represented in 
the form of a graph.



Navigation Graph

• Tiled-based maps can also be seen as graphs:

A

B

0 0 0 0 1 1 1
0 0 0 0 1 1 1
1 0 0 1 0 0 1
1 1 0 0 0 0 0

memory data:

A

B



Graph – Representation

• Adjacency list:
– Uses a vector or list Adj with |V| adjacency lists, one for each 

vertex v ∈ V.

– For each u ∈ V, Adj[u] contain references for all vertices v such 
that (u, v) ∈ A. That is, Adj[u] contains all adjacency vertices of u.



Graph – Representation

• Adjacency matrix:
– Given a graph G = (V, E), we assume that vertices are labeled with 

numbers 1, 2, . . . , |V|.

– The adjacency matrix is a matrix Aij of dimensions |V| × |V|, 
where:

𝐴𝑖𝑗 = ቊ
1 𝑖𝑓 𝑖, 𝑗 ∈ 𝐴
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Graph Representation in Unity

• We can easily create an adjacency list by implementing a class 
to represent the edges of the graph (called waypoints in the 
navigation graph). Each waypoint is connect with a set of 
other waypoints (edges):

• We also need another class to store a reference to all the 
vertices of the graph (waypoints): 

public class Waypoint : MonoBehaviour {

public Waypoint[] edges;

}

public class Pathfinding : MonoBehaviour {

public Waypoint[] waypoints;

}



Graph Representation in Unity

• A waypoint also have a position in the world. But instead of 
adding this information to the waypoint class, a better 
solution is to associate the class with a game object (such a 
sphere) and then create a prefab.



Graph Representation in Unity

• Now we can place waypoints in the game level and then 
connect them.

WP (12)

WP (10) WP (13)



• To better visualize the connections, we can uses gizmos to 
draw lines between connected waypoints.

public class Waypoint : MonoBehaviour {

public Waypoint[] edges;

void OnDrawGizmos()

{

Gizmos.color = Color.green;

foreach (Waypoint e in edges)

{

Gizmos.DrawLine(transform.position, 

e.gameObject.transform.position);

}

}

}

Graph Representation in Unity



Exercise 2

2) Place waypoints in the visibility points of the maze created in 
the previous exercise. Then, connect all the waypoints to 
create the navigation graph.



Pathfinding

• Now that we have the navigation graph, how can we find the 
best path to go from one waypoint to another?

• There are many graph search algorithms:
– Breadth-first search (BFS)

– Depth-first search (DFS)

– Dijkstra algorithm

– A* algorithm

– …

• Which algorithm is the best?



Breadth-first Search (BFS)

• Strategy: 
– It starts at the root vertex (any arbitrary vertex of the graph) and 

explores the neighbor nodes first, before moving to the next level of 
neighbors.

A

B

D E

C

F G

Search Tree:

A

BC

D

EF

G

Graph:



Breadth-first Search (BFS)

• Complexity: )( 1+dbO

* Considering a ramification factor b = 10, each node using 1KB of memory, and a 
processor capable of processing 1 million nodes per second.



Depth-first Search (DFS)

• Strategy: 
– It starts at the root vertex (any arbitrary vertex of the graph) and 

explores as far as possible along each branch before backtracking.

A

B

E F

DC

M N P Q

Search Tree:

A

CB

D

F

M

E

Graph:

N

P

Q



Depth-first Search (DFS)

• Consumes less memory than the BFS: once a node has been 
expanded, it can be removed from memory as soon as all its 
descendants have been fully explored.

• In the previous example, at depth d = 16, DFS would require 
only 156 KB of memory (instead of 10 exabytes).

• Problem: the algorithm may perform long searches when the 
solution is simple (when the goal is close to the root vertex).



Dijkstra Algorithm

• Strategy: 
– It starts at the root vertex (any arbitrary vertex of the graph) and 

explores the neighbor nodes with the lowest path cost.

A

B

E F

D

G H

C

75

170

118

71 75
99 111

Search Tree:

A

CB

D

FE

Graph:

G H

118

111
99

170
75

71 75



Dijkstra Algorithm

• The first solution found is always the optimal solution (only if 
there are no negative costs).

• When all step costs are the same, Dijkstra search is similar to 
breadth-first search.

• Dijkstra is better than BFS and DFS algorithms, but it still 
searches the entire graph indiscriminately for the shortest 
possible route (it doesn't takes into consideration the 
objective).



A* Algorithm

• Strategy: 
– Combines the path cost g(n) with an heuristic value h(n);

– g(n) = path cost from the start node to node n;

– h(n) = estimated cost of the cheapest path from n to the goal (e.g. 
straight line distance);

– The evaluation of a node is given by: f(n) = g(n) + h(n);

• Pathfinding in games is synonymous with the A* algorithm. 
Almost every pathfinding system uses some variation of the 
A* algorithm.



A* Algorithm

Arad 366 Mehadia 241 

Bucharest 0 Neamt 234 

Craiova 160 Oradea 380 

Drobeta 242 Pitesti 100 

Eforie 161 Rimnicu Vilcea 193 

Fagaras 176 Sibiu 253 

Giurgiu 77 Timisoara 329 

Iasi 226 Vaslui 199 

Lugoj 244 Zerind 374 

Hirsova 151 Urziceni 80 

Arad

Sibiu Timissoara Zerind

FagarasArad Oradea Rimnicu Vilcea

Sibiu Bucharest Craiova Pitesti Sibiu

Rimnicu VilceaBucharest Craiova

0+366=366

140+253=393 118+329=447 75+374=449

280+366=646 239+176=415 291+380=671 220+193=413

338+253=591 450+0=450 366+160=526 317+100=417 300+253=553

418+0=418 455+160=615 414+193=607



A* Algorithm

• The A* algorithm is complete and optimal.

• Complexity: is exponential in the depth of the solution (the 
shortest path) – O(bd) , but the heuristic function has a major 
effect on the practical performance of the algorithm. A good 
heuristic prunes away many of the bd nodes.

• No other algorithm guarantees to expand less nodes than the 
A* algorithm.



A* Algorithm – Pseudocode 

function A*(start, goal)

closedSet := {};

openSet := {start}; //priority queue structure

cameFrom := an empty map;

gScore := map with default value of Infinity;

gScore[start] := 0;

fScore := map with default value of Infinity;

fScore[start] := heuristic_cost_estimate(start, goal);

...



A* Algorithm – Pseudocode 
...

while openSet is not empty do

current := the node in openSet having the lowest fScore[] value;

if current = goal then

return reconstruct_path(cameFrom, current);

openSet.Remove(current);

closedSet.Add(current);

for each neighbor of current do

if neighbor in closedSet then

continue;

if neighbor not in openSet then

openSet.Add(neighbor);  

tentative_gScore := gScore[current] + dist_between(current, 

neighbor);

if tentative_gScore >= gScore[neighbor] then

continue;

cameFrom[neighbor] := current;

gScore[neighbor] := tentative_gScore;

fScore[neighbor] := gScore[neighbor] + 

heuristic_cost_estimate(neighbor, goal);

return failure;



A* Algorithm – Unity 
public List<Waypoint> FindPath(Waypoint start, Waypoint goal) {

List<Waypoint> closedSet = new List<Waypoint>();  

SimplePriorityQueue<Waypoint> openSet = new  

SimplePriorityQueue<Waypoint>();        

openSet.Enqueue(start, Heuristic(start, goal));  

Dictionary<Waypoint, Waypoint> cameFrom = new Dictionary<Waypoint, 

Waypoint>();

Dictionary<Waypoint, float> gScore = new Dictionary<Waypoint, 

float>();

foreach (Waypoint wp in waypoints)

{  

gScore.Add(wp, Mathf.Infinity);

}

gScore[start] = 0;

...

C# Priority Queue: https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp

https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp


...

while (openSet.Count > 0){

Waypoint current = openSet.Dequeue();

if (current == goal)

return ReconstructPath(cameFrom, current, start);

closedSet.Add(current);            

foreach (Waypoint neighbor in current.edges){                

if (closedSet.Contains(neighbor))

continue;

if (!openSet.Contains(neighbor))

openSet.Enqueue(neighbor, gScore[neighbor] + 

Heuristic(neighbor, goal));

float tentative_gScore = gScore[current] + Heuristic(current, 

neighbor);

if (tentative_gScore >= gScore[neighbor])

continue;

cameFrom[neighbor] = current;

gScore[neighbor] = tentative_gScore;

openSet.UpdatePriority(neighbor, gScore[neighbor] + 

Heuristic(neighbor, goal));                

}

}

return new List<Waypoint>();

}



float Heuristic(Waypoint p1, Waypoint p2){

return Vector3.Distance(p1.gameObject.transform.position, 

p2.gameObject.transform.position);

}

List<Waypoint> ReconstructPath(Dictionary<Waypoint,Waypoint> cameFrom, 

Waypoint current, Waypoint start){

List<Waypoint> total_path = new List<Waypoint>();

total_path.Add(current);

while (current != start){

foreach (Waypoint wp in cameFrom.Keys){

if (wp == current){

current = cameFrom[wp];

total_path.Add(current);

}

}

}

total_path.Reverse();

return total_path;

}

A* Algorithm – Unity 



Exercise 3

3) Implement the A* algorithm in the Pathfinding class created 
in the previous exercises.

a) Execute the FindPath function and 
show the resulting path in the 
console;

b) Add parameters to define the start 
and goal waypoints;

c) Test the algorithm with different 
start and goal waypoints;



Navigation

1. Find closest visible node (a) to current location (X);

2. Find closest visible node (b) to target location (O);

3. Search for the best path from (a) to (b);

4. Move to (a);

5. Follow path to (b);

6. Move to target location (O);

(a)

(b)

X

O



Exercise 4

4) Add an object (e.g. a capsule) to represent an NPC and then 
use the pathfinding algorithm to move the NPC from any 
place to any goal destination.

a) Create a function to find the 
closest waypoint to use as start 
and goal waypoints;

b) Move the NPC slowly though the 
computed path;



World Representations

• Pathfinding algorithms don’t work directly on the level 
geometry. They rely on a simplified world representation.

• Most common techniques for world representation:
– Tile Graphs;

– Points of Visibility;

– Finely Grained Graphs;

– Expanded Geometry;

– Navigation Meshes;



Tiled-Based Graphs

• Tile-based levels split the whole world into regular, usually 
square, regions (although hexagonal regions are occasionally 
seen in some games).
– The whole level can be tiled-based or the tile grid overlays the 3D level;

• Advantages: tile-based graphs are 
generated automatically. Easy to estimate 
edge’s weights. 

• Problems: the search spaces can quickly 
become extremely large (a 100x100 map 
has 10,000 nodes and 78,000 edges!). If no 
path smoothing techniques are applied, 
character’s movements will be unnatural.



Points of Visibility (POV)

• A points of visibility navigation graph is created by placing 
waypoints at important points in the environment such that 
each waypoint has line of sight to at least one other.
– Usually the waypoints are placed by hand (level designer task);

• Advantages: easy to implement. Easy to 
include extra information about 
waypoints (e.g. good sniping, cover, or 
ambush positions).

• Problems: large maps require a lot of 
work to place all waypoints manually. 
Problematic if the game includes map 
generation features. Blind spots problem.



Expanded Geometry

• A POV graph can be automatically generated using the 
expanded geometry  technique.
a) Expand geometry (by a amount proportional to the bounding radius 

of moving agents);

b) Connect all vertices;

c) Remove non-line of sight edges;



Finely Grained Graphs

• Poor paths and inaccessible positions can be improved by 
increasing the granularity of the navigation graph.

• Advantages: Removes blind spots and 
improves path smoothness. Can be 
generated automatically using “flood fill” 
algorithm.

• Problems: can have similar performance 
issues as tiled graphs.



Finely Grained Graphs – Flood Fill

1. Place a seed node somewhere in 
the map;

2. Expand the nodes and edges 
outward from the seed in each 
available direction (e.g. 8 
directions), and then the nodes on 
the fringe of the graph;
– Check for collisions with the level 

geometry;

3. Continue until all the navigable 
area is filled.



Path to an Item Type

• What to do when we need a path to an item type (such as a 
rocket launcher) that can be found in several locations?
– In this situation, Dijkstra’s algorithm is a better choice.



Path Smoothing

• When the navigation graph is in the shape of a grid or when 
the path have unnecessary edges, the movements of the 
agent may look unnatural. 

• Solution: Path Smoothing



Simple Path Smoothing Algorithm

• Check for the “passability” between adjacent edges. If one of 
the edges is superfluous, the two edges are replaced with one.
– “passability” can be checked thought a ray-cast. If we can cast a ray 

between A and C then waypoint B is not needed.



Simple Path Smoothing Algorithm

1. Grab source E1 (edge);

2. Grab destination E2 (edge);

3. If the agent can move between the 
source of E1 and destination of E2:

– a) Assign the destination of E1 to the 
destination of E2;

– b) Remove E2; 

– c) Advance E2;

4. If the agent cannot move between the 
source of E1 and destination of E2:

– a) Assign E2 to E1;

– b) Advance E2;

5. Repeat until the destination of E1 or destination of E2 is the endpoint of 
the path;

E1

E1

E2

E2

E1

E1



Simple Path Smoothing Algorithm



Navigation Mesh

• Tile-based graphs and points of 
visibility are useful solutions to 
simple problems, but the majority 
of modern games use navigation 
meshes.

• It takes advantage of the fact that 
the level designer already needs to 
specify the way the level is 
connected using polygons/triangles.
– Can use level geometry or a new 

geometry created specially for 
navigation.



Navigation Mesh

• Instead of network of points, a navigation mesh comprises a 
network of convex polygons.
– It has more information than waypoints (i.e., the agent can walk 

anywhere in the polygon);

– While waypoints require a lot of points, the navigation mesh needs 
only few polygons to cover same area.



Navigation Mesh

• Example 1:

Waypoints
Graph

Navigation
Mesh



Navigation Mesh

• Example 2:

Waypoints
Graph

Navigation
Mesh



Optimization – Hierarchical Pathfinding

• Hierarchical pathfinding works in a similar way to how humans 
move around their environment.
– Typically two hierarchical levels, but can be more. 

– First find a path in high-level, then refine in low‐level.



Optimization – Pre-Calculated Paths

• If the game environment is static and memory usage is not a 
problem, a good option to reduce CPU load are pre-calculated 
path tables.



Optimization – Pre-Calculated Costs

• Sometimes it’s necessary for a agent to calculate the cost of 
traveling from one place to another. For example, to decide 
which is easiest item to get. This can be done with pre-
calculated cost tables.



Optimization – Other Techniques

• Time-Sliced Pathfinding: allocate a fixed amount of CPU 
resources per update step for all the search requests and 
distribute these resources evenly between the searches.
– Considerable amount of coding work required!

• Store Path Results: save pathfinding results in memory an 
reuse then when necessary.

• Recompute paths to avoid sticky situations:



Unity Navigation System

• Unity’s Navigation System allows characters to intelligently 
move around the game world. The system uses navigation 
meshes automatically created from the scene geometry. 

       

                           

           

• NavMesh – data structure that describes 
the walkable surfaces of the game world. 

• NavMesh Agent – component to create 
moving characters. 

• Off-Mesh Link – component that allows 
navigation shortcuts (e.g. jumps over 
holes, floors, or fences).

• NavMesh Obstacle – component to define 
moving obstacles that the agents should 

avoid while navigating the world.



Unity Navigation System

• The process of creating a NavMesh from the level geometry
uses the meshes of all Game Objects that are marked as 
Navigation Static, and processes them to create a navigation 
mesh that approximates the walkable surfaces of the level.

• Navigation window: 
– Window -> Navigation



Unity Navigation System

• Creating a basic NavMesh:
– (Step 1): Select the objects that represent walkable surfaces and mark 

them as “Static Geometry” and “Walkable” in the Object tab of the 
Navigation Window.

– (Step 2): Select the objects that represent not walkable surfaces and 
mark them as “Static Geometry” and “Not Walkable” in the Object tab 
of the Navigation Window.



Unity Navigation System

• Creating a basic NavMesh:
– (Step 3): Adjust the bake settings to match the agent properties.

– (Step 4): Click bake to build the NavMesh.

• Agent Radius: defines how close the agent 
center can get to a wall or a ledge.

• Agent Height: defines how low the spaces 
are that the agent can reach.

• Max Slope: defines how steep the ramps 
are that the agent walk up.

• Step Height: defines how high obstructions 
are that the agent can step on.



Unity Navigation System

• The resulting NavMesh will be shown in the scene as a blue 
overlay on the underlying level geometry:



Unity Navigation System

• Creating a NavMesh Agent:
– (Step 1): Create an object to represent the agent (e.g. a cylinder).

– (Step 2): Add a NavMesh Agent component to the object (Component 
-> Navigation -> NavMesh Agent).

– (Step 3): If necessary, adjust the agent radius to match the object.



Unity Navigation System

• The NavMesh Agent component handles both the 
pathfinding and the movement of the character.

• The simplest way to move the agent towards a destination is 
done by setting the desired destination point by script.

public class AgentControl : MonoBehaviour {

public Transform goal;

void Start(){

NavMeshAgent agent = GetComponent<NavMeshAgent>();

agent.destination = goal.position; 

}

}



Unity Navigation System

• NavMesh Obstacle components can be used to describe 
obstacles the agents should avoid while navigating. 
– When an object obstructs the agent path, the Navigation System will 

automatically find another path (if there is one).



Unity Navigation System

• Off-Mesh Links are used to create paths crossing outside the 
walkable navigation mesh surface. 
– If the path via the off-mesh link is shorter than via walking along the 

NavMesh, the off-mesh link will be used.



Unity Navigation System

• The Navigation Areas define how difficult it is to walk across a 
specific area, the lower cost areas will be preferred during 
path finding.
– The cost per area type can be set globally in the Areas tab.



Exercise 5

5) Modify the scene created in Exercise 4 to use the Unity 
Navigation System.

a) Create the navigation mesh;

b) Create an agent;

c) Create a set of destination points;

d) Make the agent move through the 
destination points;

e) Add different costs to some of the 
corridors of the maze.



Further Reading

• Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett
Learning. ISBN: 978-1-55622-078-4.

– Chapter 8: Practical Path Planning

• Millington, I., Funge, J. (2009). Artificial Intelligence for Games (2nd ed.). 
CRC Press. ISBN: 978-0123747310.

– Chapter 4: Pathfinding


