Distributed Programming

Lecture 04 - Unreal Engine and Network
Communication

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

Editor — Unity vs. Unreal

UNITY EDITOR UNREAL EDITOR

OOOOOOO 2 3 i 1 e s L I = B 2y |]
= = e . TOOLBAR
4 ree (oo [0}

Recertyy Psced

(4

— harce
v
el — - >/
Cotor =

SINSPECTORIM-~ =

5
»

HIERARCHY/

CONTENT
BROWSER

Recommended reading: Unreal Engine 4 For Unity Developers
https://docs.unrealengine.com/en-us/GettingStarted/FromUnity

https://docs.unrealengine.com/en-us/GettingStarted/FromUnity

Glossary — Unity vs. Unreal

Category Unity Unreal Engine
Component Component
Gameplay Types GameObject Actor, Pawn
Prefab Blueprint Class
Hierarchy Panel World Outliner
_ Inspector Details Panel
Editor Ul _
Project Browser Content Browser
Scene View Viewport
Mesh Static Mesh
Meshes :
Skinned Mesh Skeletal Mesh
_ Shader Material
Materials

Material

Material Instance

Glossary — Unity vs. Unreal

Category Unity Unreal Engine
Effects Particle Effect Effect, Particle, Cascade
Game Ul Ul UMG
: . . . Skeletal Animation
Animation Animation
System
2D Sprite Editor Paper2D
_ C# C++
Programming : :
Script Blueprint
Raycast Line Trace, Shape Trace

Physics

Rigid Body

Collision, Physics

Unreal Engine — Main Classes

An Actor Is an object that can be placed or spawned In

s Actor e
the world.

A Pawn Is an actor that can be 'possessed’ and receive

input from a controller.

o, Pawn

ch ¢ A character Is a type of Pawn that includes the ability to
y —naracter walk around.

- Pplaver Controller A Player Controller Is an actor responsible for controlling
% Clay a Pawn used by the player.

Game Mode Base defines the game being played, its
(S RECUNIEEEEEIN (ules, scoring, and other facets of the game type.

Actor Component An ActorComponent Is a reusable component that can be
“ P added to any actor.

A Scene Component is a component that has a scene

% Scene Component NNy e R I e

Unreal Engine — Main Classes

UObject

T

AActor

1

UActorComponent

T

AController ALight APawn AGameModeBase USceneComponent
I I [r
AAlController || APlayerController ADirectionalLight ACharacter UCameraComponent

Multiplayer in Unreal Engine

The Unreal Engine is built with multiplayer gaming in mind.
— Is very easy to extend a single player experience to multiplayer.
— Even single-player games, use the networking architecture.

The engine is based on a client-server model.

— The server is authoritative and makes sure all connected clients are
continually updated.

Actors are the main element that the server uses to keep
clients up to date.
— The server sends information about the actors to clients;

— Clients have an approximation of each actor and the server maintains
the authoritative version.

Multiplayer in Unreal Engine

 The server is in charge of driving the flow of gameplay.

* |t handles network connections,
notifies clients when gameplay

starts and ends, when is time to Game State Updates Client
travel to a new map, along with
actor replication updates. Commands
e Only the server contains a valid Client Server Client

copy of the GameMode actor.
Clients contain only an approximate
copy of the actors, and can use it as
a reference to know the general
state of the game.

Client

Multiplayer in Unreal Engine

e Network Modes:

— Standalone: the server runs on a local machine and not accept clients
from remote machines. Is used for single-player games.

— Dedicated Server: the server has no local players and can run more
efficiently by discarding sound, graphics, user input, and other player-
oriented features. Is used for multiplayer games hosted on a trusted
and reliable server where high-performing are needed.

— ListenServer: is a server that hosts a local player, but is open to
connections from remote players as well. Is good for games where users
can set up and play their own games without a third-party server.

— Client: the machine is a client that can connect to a dedicated or listen
server, and therefore will not run server-side logic.

Multiplayer in Unreal Engine

The core element of the networking process in Unreal Engine
is Actor Replication.

— The server maintains a list of actors and updates the client periodically
so that the client can have a close approximation of each actor (that is
marked to be replicated).

Actors are updated in two main ways:
— Property updates;

— RPCs (Remote Procedure Calls).

Properties are replicated automatically (any time they change)
and RPCs are only replicated when executed.

Property Replication

Example of property to be replicated: actor's health.

Each actor maintains a list of properties that can be marked
for replication to clients.

— Whenever the value of the variable changes on the server side, the
server sends the client the updated value.

— Property updates only come from the server (i.e.: the client will never
send property updates to the server).

— Some properties replicate by default (e.g.: Location, Rotation, etc.).

Actor property replication is reliable.

Property Replication

* Replicate a property:
1. Set the replicated keyword:

UPROPERTY (replicated)
float health;

2. Implement the GetLifetimeReplicatedProps function:

vold MyClass::GetLifetimeReplicatedProps (TArray<FLifetimeProperty>&
OutLifetimeProps) const/{
Super: :GetLifetimeReplicatedProps (OutLifetimeProps) ;

DOREPLIFETIME (MyClass, health); «—_ | Default replication rule:
J replicates to all clients

3. Enable replication in the constructor method:

SetReplicates (true) ;

Remote Procedure Calls (RPCs)

Example of RPC: a function to spawn an explosion to each
client at a certain location.

RPCs are functions that are called locally, but executed
remotely on another machine.

— Primary use: to do unreliable gameplay events that are temporary or
cosmetic in nature.

— E.g.: play sounds, spawn particles, or do other temporary effects that
are not crucial to the Actor functioning.

By default, RPCs are unreliable. To be reliable, a especial
keyword (reliable) must be used in the definition of the RPC.

Remote Procedure Calls (RPCs)

* Defining an RPC:

— To declare a function as an RPC that will be called on the server, but
executed on the client:

UFUNCTION (Client)
void ClientRPCFunction () ;

— To declare a function as an RPC that will be called on the client, but
executed on the server:

UFUNCTION (Server)
vold ServerRPCFunction () ;

— To declare a function as an RPC that will be called from the server, and
then executed on the server and on all connected clients:

UFUNCTION (NetMulticast)
vold MulticastRPCFunction () ;

RPC Validation

e The validation function for an RPC allows the detection of bad
parameters or cheating:

— It can notify the system to disconnect the client who initiated the call.

 Example:

UFUNCTION (Server, WithValidation)
vold SomeRPCFunction (int32 AddHealth):;

bool SomeRPCFunction Validate (int32 AddHealth) {
if (AddHealth > MAX_ADD_HEALTH){
return false;

}

return true;

}

void SomeRPCFunction Implementation (int32 AddHealth) {
Health += AddHealth;

}

Prototype Game

Concept: a cooperative multiplayer game where players must
collect all coins and then go to a specific location to complete
the level.

Gameplay elements:
— Player character (walk, jump, crouch);

— Collectible coins: after collecting all coins,

the player must go the “level complete” area
to finish the level.

— Enemies (zombies): patrol the level and
attack the player. If the enemy touches the
player, is game over;

— GUI messages: number of remaining coins,

game over, and level completed messages;

Multiplayer Game

Create a new C++ empty project:

11 Unreal Project Browser
Project New Project

Choose a template to use as a starting point for your new project. Any of these features can be added later by clicking Add Feature or Content Pack in Content Browser.

¥ Blueprint | ggs C++

R N [

i

Puzzle Rolling Side
Person Scroller

L3

$ B,

-

2D Side Third Top Down Twin Stick Vehicle Vehicle
Scroller Person Shooter Advanced

Basic Code

An empty project with some basic game framework code classes created.

Choose some settings for your project. Don't worry, you can change these later in the Target Hardware section of Project Settings. You can also add the Starter Content to your project later

using Content Browser.
_ N @

Desktop / Console Maximum Quality No Starter Content

Select a location for your project to be stored

C:\Users\edirl\Documents\Unreal Projects - fl MultiplayerGame]

Folder Name

Create Project

Multiplayer Game

* (Create a new character class:

u Add C++ Class

Choose Parent Class

This will add a C++ header and source code file to your game project. B show All Cla

O None

An empty C+

i Pawn

A Pawn is an actor that can be | ' e input from a controller.

® Actor

An Actor is an c that car a spawned in the world.

A komdim o

Selected Class Character
Selected Class Source Character

Cancel

Multiplayer Game

* Implement the character movement:

protected: MyCharacter.h
volid MoveForward (float wvalue);

void MoveRight (float value);

void AMyCharacter: :MoveForward (float value) { MyCharacter.cpp
AddMovementInput (GetActorForwardVector (), wvalue);
}
void AMyCharacter: :MoveRight (float wvalue) {
AddMovementInput (GetActorRightVector (), value);
}
void AMyCharacter::SetupPlayerInputComponent (UInputComponent*
PlayerInputComponent) {
Super: :SetupPlayerInputComponent (PlayerInputComponent) ;
PlayerInputComponent->BindAxis ("MoveForward", this,
&AMyCharacter: :MoveForward) ;
PlayerInputComponent->BindAxis ("MoveRight", this,
&AMyCharacter: :MoveRight) ;

Multiplayer Game

* Setup the axis keys in the project settings:

U

& ProjectiSettings

. Search
Engine
AlS

"-h These settings are saved in Defaultinput.ini, which is currently writable.

4 Bindings
Action and Axis Mappings provide a mechanism to conveniently map keys and axes to input behaviors by
inserting a layer of indirection between the input behavior and the keys that invoke it. Action Mappings are for
key presses and releases, while Axis Mappings allow for inputs that have a continuous range.

Action Mappings + @
4 Axis Mappings + @

el MoveForward

4 \iewport Properties
Capture Mouse on Launch

DEIETIRUENTG G GITECRSE TN GEE Capture Permanently Including Initial Mouse Down w
Default Viewport Mouse Lock Mode Lock on Capture v

Multiplayer Game

* Create a blueprint for the character class and test the player
movement in the level:

== Content Browser B outputLog

11 Pick Parent Class

4 Common Classes

AddNew'~» X Import [B)SaveAll &= | & Co

FEN Search Folders Jo! Y ilters~ [EEE

4 g Content
[

4 C++ Classes o
B3 MultiplayerGame

ctor is an object that can be placed or spawned in

(J Actor the world.

A Pawn is an actor that can be 'p d' and receive

a Rau input from a controller.

. Character racter is a type of Pawn that includes the ability to

.. Player Controller
: R BP_My

Character
&) Game Mode Base

« Actor Component
., Scene Component

4 All Classes .
Controller R

Controller R
Controller R
Affect Navic

Player 0

ad) i

5items (1 s @ View

Placed in World v
Select: Cancel

AlController> [C NI 4

Multiplayer Game

* Implement the camera movement and setup the axis keys:

MyCharacter.cpp

void AMyCharacter: :SetupPlayerInputComponent (UInputComponent*
PlayerInputComponent) {

PlayerInputComponent->BindAxis ("LookUp", this,

&AMyCharacter: :AddControllerPitchInput) ;
PlayerInputComponent->BindAxis ("Turn", this,

&AMyCharacter: :AddControllerYawInput) ;

Multiplayer Game

* Create a 3rd person camera and a spring arm components in
the character class:

UPROPERTY (VisibleAnywhere, BlueprintReadOnly, Category = "Components")
class UCameraComponent * CameraComponent;
UPROPERTY (VisibleAnywhere, BlueprintReadOnly, Category = "Components")
class USpringArmComponent * SpringArmComponent;

AMyCharacter: :AMyCharacter () { MyCharacter.cpp

PrimaryActorTick.bCanEverTick = true;

SpringArmComponent = CreateDefaultSubobject<USpringArmComponent>
("SpringArm Component") ;

SpringArmComponent->bUsePawnControlRotation = true;

SpringArmComponent->SetupAttachment (RootComponent) ;

CameraComponent = CreateDefaultSubobject<UCameraComponent>
("Camera Component") ;
CameraComponent->SetupAttachment (SpringArmComponent) ;

Multiplayer Game

 Download and import the Animation Starter Pack:

— https://www.unrealengine.com/marketplace/animation-starter-pack

@ UNREAL ENGINE ABOUT LEARN COMMUNITY MARKETPLACE

CONTENT DETAIL Q o

Home Categories v Free On Sale New Content Vault

Animation Starter Pack
Epic Games - 2014-08-20
Average Rating: [655) L 8. 8. 8 &

a Fantastic resource for prototyping your next project or getting your

next mod up and running

Supported Platforms
L =y
@

Supported Engine
Versions

https://www.unrealengine.com/marketplace/animation-starter-pack

Multiplayer Game

Add and setup the model mesh in the character blueprint:

u TestMap* ‘W EPIyCharacter
File Edit Asset View Debug Window Help My Character

-=. Components | ’? - @ ‘ a b % Details
e e VS - W [~ W = P D e emm— e

Compile Save Browse Find Class Settings Class Defaults = Simulation HEV] Debug Filter
BP_MycCharacter(self) 4 Transform
== Viewport f Construction Scrip m= Event Graph T—
4 ® capsuleComponent (Inl ‘

R\ ArrowComponent (Inh
4 ¢" SpringArmComponen! A Soekats
%y CameraComponent

- Rotation v

Parent Sock:

My Blueprint

4 Animation

+Add New v [EEFe] © ~ \ IV EUTM Y Use Animation Blueg v
4 Graphs + Anim Class _ Jo R

427 EventGraph Disable Post [l
© Event BeginPlay
€ Event ActorBeginOverl 4 Mesh
€ Event Tick
4 Functions er + \ e veletain : SK_Manne ¥
eletal es
ConstructionScript
Macros +
Variables + d ! 4 Materials

Event Dispatchers L M_UE4Man,w
Element 0 e O~

Textures

M_UE4Man,»

Element 1 ' e D0

4 Clothing

Multiplayer Game

e Clear the animation blueprint (UE4ASP_HeroTPP_AnimBlueprint)
and setup the animation in the character blueprint.

»# Cast To Character

| Calculate Direction

Retum Value @
O Event Blueprint Update Animation 2 »
= ation
» 45 T @ Direction

Delta Time X O

J GetActorRotation

Target Retumn Value @ ===

J Try Get Pawn Owner 4 Animation

Target [self] Retum Value Animation Mode Use Animation Blueprintw

J Get Velocity

g Anim Class UE4ASP_HeroTPP_AnimBluep [F &R 1
argef ietum Value @

\ [VectorLength
" @A : Disable Post Proces [}

Retumn Value @

4 Mesh

Skeletal Mesh

Multiplayer Game

* Implement the crouch action:

protected: MyCharacter.h

void BeginCrouch () ;
void EndCrouch () ;

void AMyCharacter: :BeginCrouch () { MyCharacter.cpp
Crouch () ;

}

void AMyCharacter: :EndCrouch () {
UnCrouch () ;

}

AMyCharacter: :AMyCharacter () {

GetMovementComponent () ->GetNavAgentPropertiesRef () .bCanCrouch = true;

}

Multiplayer Game

* Implement the crouch action:

MyCharacter.cpp

void AMyCharacter::SetupPlayerInputComponent (UInputComponent*
PlayerInputComponent) {

PlayerInputComponent->BindAction ("Crouch", IE Pressed, this,
&AMyCharacter: :BeginCrouch) ;

PlayerInputComponent->BindAction ("Crouch", IE Released, this,
&AMyCharacter: :EndCrouch) ;

4 Action Mappings + @

FI Crouch + X

- Left Ctrl A d shitt [ctrt (At cmd [X

D Axis Mappings + @

Multiplayer Game

e Set the crouch variable in the animation blueprint:

f Calculate Direction

» »
Return Value @ ==———— @ Direction O Crouching

SET

 Event Blueprint Update Animation

Delta Time X C

e

Target Is Crouched

| GetActorRotation

J Try Get Pawn Owner

self| Retum Va

J Get Velocity
[VectorLength

A Retumn V

Multiplayer Game

* Implement the jump action:

MyCharacter.cpp

void AMyCharacter: :SetupPlayerInputComponent (UInputComponent*
PlayerInputComponent) {

PlayerInputComponent->BindAction ("Jump", IE Pressed, this,
&AMyCharacter: :Jump) ;

4 pction Mappings ¥ @
EN Crouch

=l Jump

I* Axis Mappings *+ @

Multiplayer Game

* Implement the jump action:

VovEment

To Chara
SET

Enable Jump

> Event Bl

umping

f GetActorRotation

f Try Get Pawn Owner

J Get Velocity

Multiplayer Game

5 & Empty Pawn
. . . Lights
* Setup the game to be played in multiplayer: [B i
1. Delete the character from the map and add two :mi,t ~ |ibi
or more “Player Start” actors to the map. pyme
G S r"ass DO X

GameStateBase v [TN O

2. Create a new Game Mode blueprint and set our erco IS © +
: €0+
character blueprint as default pawn class. e MO e 0+ x
- cinas €0+ x>
€0+

3. Setthe new Game Mode as the Game Mode for [REIER =N
the map in the World Settings.

4 Game Mode

GameMode Over

4. Disable the auto possess option in the character
blueprint.

Use Controller Rotation Pitc [
Use Controller Rotation Yav

Use Controller Rotation Roll .

Can Affect Navigation Gene .

Auto Possess Player Disabled -

Collectible Coin

Low poly coin model:
— http://www.inf.puc-rio.br/~elima/dp/coin.fbx

Importing the FBX model: drag and drop

u FBX Import Options x

Import Static Mesh Reset to Default

4 Transform

Import Translation

: : : Import Uniform Scale = 100.0

Import Uniform Scale

4 Miscellaneous
Convert ne
Force Front XAxis

ne Unit

4 Lod Settings

Auto Compute Lod D

4 Material

Search Location
Base Material Name

Import Materials
Import Textul
v

Lo] mpor | cance |

http://www.inf.puc-rio.br/~elima/dp/coin.fbx

Collectible Coin

Create a new C++ class: CollectibleCoin

U

Choose Parent Class

This will add a C++ hea

Add C++ Class

d source code file to your game project. Show All Class
yourg p

O None
th a default
f Character
A ch ris a type of Pawn that inc
i Pawn

A Pawn is an actor that can be e input from a controller.

#» Actor Component

A A b P et

2obls cmcmmnm oot o

Selected Class Actor
Selected Class Source

Cancel

CollectibleCoin.h

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "CollectibleCoin.generated.h"

UCLASS ()
class MYFIRSTGAME API ACollectibleCoin : public AActor

{
GENERATED BODY ()

public:
// Sets default values for this actor's properties
ACollectibleCoin() ;

protected:
// Called when the game starts or when spawned
virtual void BeginPlay () override;

public:

// Called every frame
virtual void Tick(float DeltaTime) override;

g

CollectibleCoin.cpp

#include "CollectibleCoin.h"

// Sets default values
ACollectibleCoin: :ACollectibleCoin ()

{

// Set this actor to call Tick() every frame.

PrimaryActorTick.bCanEverTick = true;

// Called when the game starts or when spawned
void ACollectibleCoin: :BeginPlay ()

{
Super: :BeginPlay () ;

// Called every frame
void ACollectibleCoin::Tick(float DeltaTime)

{
Super::Tick (DeltaTime) ;

Collectible Coin

* Next step: define the structure of the collectible coin:

#include "Components/SphereComponent.h"
#include "CollectibleCoin.generated.h"

protected:

UPROPERTY (VisibleAnywhere, Category =
UStaticMeshComponent* MeshComponent;

UPROPERTY (VisibleAnywhere, Category =
USphereComponent* SphereComponent;

virtual void BeginPlay () override;

"Components")

"Components")

CollectibleCoin.h

Collectible Coin

* Next step: define the structure of the collectible coin:
CollectibleCoin.cpp

ACollectibleCoin: :ACollectibleCoin ()
{

PrimaryActorTick.bCanEverTick = true;

MeshComponent = CreateDefaultSubobject<UStaticMeshComponent>
("Mesh Component") ;
RootComponent = MeshComponent;
SphereComponent = CreateDefaultSubobject<USphereComponent>
("Sphere Component") ;
SphereComponent->SetupAttachment (MeshComponent) ;

Collectible Coin

* Next step: create a Blueprint Class for the collectible coin:

11 Pick Parent Class

4 Common Classes

Act An Actor Is an object that can be placed or spawned in
3 Actor the world.

A Pawn is an rthat can be 'possessed' and receive
input from a controller.

er is a type of Pawn that includes the ability to
walk around.
Material . . :
A Player Controller is an actor responsible for controlling

». Player Controller a Pawn used by the player.

Game Mode Base defines ame being played, its

.-‘ Particle System
- rules, scoring, and other s of the game type.

. k=] Game Mode Base
& Substance An ActorComponent Is a reusable component that can be

i < Actor Component [PRIY REENIREN

A Scene Component is a component that has a scene

ROV transform and can be attached to other scene

Animation

Artificial Intelli s 4 All Classes

“O
“®
(J [®[EctibleCoin

3 items (1 selected) @ View Options v

Paper2D Select Cancel
Physics

o

ounds

Collectible Coin

In the Blueprint editor, select the mesh of the coin:

S X
u M [EPIGH|[ECtibECAINF
File Edit Asset View Window Help Collectible Coin

-=- Components 1 . Details
e @ = B
FRAGComponeRts - Ho-
Save Browse Find Class Settings Class Defaults ~ Simulation v
4 Variable

- £ Construction Scrip == Event Graph Variable Nz [NMESHGompoRant
MeshComponent (|
SphereComponer g i

Editable wh

® BP_CollectibleCoin(s

My Blueprint 4 Transform

+AddNew~ [© ~ scale v [[ENEEREED &

4Graphs + Mobility e < 4t s feg

4= EventGraph
© Event BeginPlay
€ Event ActorBeg
€ Event Tick

4 Functions (el

4 Sockets

Parent Soc

4 static Mesh
=

*1 ConstructionScrif
coin -
Static Mes!
Macros + - e Do
Variables +

Event Dispatchers 4 4 Materials

Material »
Element 0 e O

_Textures 52

Then, compile the blueprint and place it in the level.

Collectible Coin

* Rotating the coin in the game:
CollectibleCoin.h

public:
UPROPERTY (EditAnywhere, Category = "Gameplay")
float RotationSpeed;

CollectibleCoin.cpp

volid ACollectibleCoin::Tick(float DeltaTime)

{
Super::Tick (DeltaTime) ;
AddActorLocalRotation (FRotator (RotationSpeed * DeltaTime, 0, 0));
}

Collectible Coin

* Destroying the coin when the player collides:
CollectibleCoin.h
public:

virtual void NotifyActorBeginOverlap (AActor* OtherActor) override;

CollectibleCoin.cpp

void ACollectibleCoin::NotifyActorBeginOverlap (AActor* OtherActor)
{
Super: :NotifyActorBeginOverlap (OtherActor) ;
if (dynamic cast<AMyCharacter*>(OtherActor) != nullptr) {
Destroy (this) ;

Collectible Coin

* Setup the collision properties in the blueprint:

— MeshComponent: “ collision

Simulation Generates Hit | [}

Phys Material Override

Generate Overlap Events
Can Character Step Up On
[Collision Presets NoCollision w s

— SphereComponent: |

Simulation Generates Hit | [}
Phys Material Override
Generate Overlap Events

I Collision Presets OverlapOnlyPawn~ J&l

UProperty Specifiers

Property Tag

Effect

VisibleAnywhere

Indicates that this property is visible in all
property windows, but cannot be edited.

EditAnywhere

Indicates that this property can be edited
by property windows, on archetypes and
instances.

EditDefaultsOnly

Indicates that this property can be edited
by property windows, but only on
archetypes.

BlueprintReadOnly

This property can be read by Blueprints,
but not modified.

BlueprintReadWrite

This property can be read or written from
a Blueprint.

EditInstanceOnly

Indicates that this property can be edited
by property windows, but only on
instances, not on archetypes.

https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers

https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers

UFunction Specifiers

Function Specifier

Effect

BlueprintCallable

The function can be executed in a
Blueprint or Level Blueprint graph.

BlueprintimplementableEvent

The function can be implemented in a
Blueprint or Level Blueprint graph.

BlueprintNativeEvent

The function is designed to be overridden
by a Blueprint, but also has a default
native implementation.

CalllnEditor

The function can be called in the Editor on
selected instances via a button in the
Details Panel.

ServiceRequest

The function is an RPC (Remote Procedure
Call) service request.

ServiceResponse

This function is an RPC service response.

https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers

https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Reference/Properties/Specifiers

Collectible Coin

* Spawning a particle system when the player collects the coin:

CollectibleCoin.h

protected:

UPROPERTY (EditDefaultsOnly, Category = "Effects")
UParticleSystem* CollectEffects;

void PlayEffects();

Collectible Coin

* Spawning a particle system when the player collects the coin:

#include "Kismet/GameplayStatics.h" CollectibleCoin.cpp

volid ACollectibleCoin::NotifyActorBeginOverlap (AActor* OtherActor)
{
Super: :NotifyActorBeginOverlap (OtherActor) ;
if (dynamic cast<AMyCharacter*>(OtherActor) != nullptr) {
Destroy(this) ;
PlayEffects() ;

void ACollectibleCoin::PlayEffects|()

{
UGameplayStatics: :SpawnEmitterAtLocation (this, CollectEffects,

GetActorLocation()) ;

Collectible Coin

* Counting the number of coins remaining in the level:

— Create new C++ Game State class:

U Add C++ Class

Choose Parent Class

This will add a C++ header and source code file to your game project. B show All Classes

of the heads-up display

® Player State

A PlayerState is created for every player on a server (or in a standalone game).

% Blueprint Function Library

This class is a basi s for any function libraries e

O Slate Widget
A custom S dget, deriving from SCompoundWidget

Selected Class 5
Selected Class Source Gz

Collectible Coin

* Counting the number of coins remaining in the level:

public:
UFUNCTION (BlueprintCallable)
int CountCoinsInlLevel () ;

MyGameStateBase.h

MyGameStateBase.cpp

int AMyGameStateBase::CountCoinsInLevel ()
{
TArray<AActor*> FoundCoins;
UGameplayStatics: :GetAllActorsOfClass (GetWorld(),

ACollectibleCoin::StaticClass (), FoundCoins):;
return FoundCoins.Num() ;

Collectible Coin

* Displaying the information in the game Ul with a Widget
Blueprint:
1. First, show number of coins remaining in the level;

2. After collecting all coins in the level, show the message “All coins
collected!!!”.

 Step 1: create a Widget Blueprint

Blueprints

Sounds

User Interface S o
Z| Fon

_—+#\ Slate Brush

-

» pp Slate idget Style
E Widget Blueprint

Collectible Coin

* Step 2: instantiate the Widget Blueprint in the BeginPlay
event of the MyCharacter blueprint.

<> Event BeginPlay

»
PR N
. _ _f Add to Viewport -
L Branch 8= Create BP Ul Widget Target is User Wid
| Tiue p 3 D

Condition False O Class BPUI Return Value
Owning Player

_f Is Locally Controlled
Targelis Fawn

Target | _-:-,t-|f| BETHREINE

Collectible Coin

Step 3: bind the text value and create the Widget Blueprint

logic.

“f ToText (string)
In String Return Value @ ’ = Return Node

»

@ Return Value

“f Append

A | Remaining Return Value

B Add pin +

= Get Text 0

»
\ =+ Cast To MyGameStateBase [Count Coins in Level
B Return Node

» »
. L = <
Object Cast Failed [»
— Target Return Value @ r‘i
[Get Game State As My Game State Base Compare Int Return Value
Return Value | JST o . Loing
= @ Input =P
yare With |T| 3

Level Complete

 Level complete area: alter collecting all coins, the player
can go to this area to complete the level.

LevelCompleteArea.h
UCLASS ()

class MYFIRSTGAME API ALevelCompleteArea : public AActor
{

protected:
UPROPERTY (VisibleAnywhere, Category = "Components")
class UBoxComponent* BoxComponent;

UFUNCTION ()

void HandleBeginOverlap (UPrimitiveComponent* OverlappedComponent,
AActor* OtherActor, UPrimitiveComponent* OtherComp,
int32 OtherBodyIndex, bool bFromSweep, const
FHitResult & SweepResult);

Level Complete

 Level complete area: alter collecting all coins, the player
can go to this area to complete the level.

LevelCompleteArea.cpp

AlevelCompleteArea: :ALevelCompleteArea ()

{
BoxComponent = CreateDefaultSubobject<UBoxComponent> ("BoxComponent") ;
BoxComponent->SetBoxExtent (FVector (200.0£, 200.0f, 200.0f));
BoxComponent->SetCollisionEnabled (ECollisionEnabled: :QueryOnly) ;
BoxComponent->SetCollisionResponseToAllChannels (ECR Ignore);
BoxComponent->SetCollisionResponseToChannel (ECC Pawn, ECR Overlap);
RootComponent = BoxComponent;

BoxComponent->0OnComponentBeginOverlap.AddDynamic (this,
&ALevelCompleteArea: :HandleBeginOverlap) ;

Level Complete

Level complete area: alter collecting all coins, the player
can go to this area to complete the level.

LevelCompleteArea.cpp

void ALevelCompleteArea: :HandleBeginOverlap (UPrimitiveComponent*
OverlappedComponent, AActor* OtherActor,
UPrimitiveComponent* OtherComp, int32 OtherBodyIndex,

bool bFromSweep, const FHitResult & SweepResult) {
AMyCharacter* character = Cast<AMyCharacter> (OtherActor);
AMyGameStateBase* gamestate = Cast<AMyGameStateBase> (

GetWorld () ->GetGameState ()) ;
if ((character) && (gamestate)) {

1f (gamestate->CountCoinsInlLevel () == 0) {

gamestate->MulticastOnLevelComplete (character, true);

Level Complete

 Level complete area: alter collecting all coins, the player
can go to this area to complete the level.

public: MyGameStateBase.h

UFUNCTION (NetMulticast, Reliable)
void MulticastOnLevelComplete (APawn* character, bool succeeded);

MyGameStateBase.cpp

void AMyGameStateBase::MulticastOnLevelComplete Implementation (APawn¥*
character, bool succeeded)

{

Level Complete

 Level complete area: alter collecting all coins, the player
can go to this area to complete the level.

1. Create a Widget Blueprint with a “Level Completed!” message;

2.

Level Complete

Level complete area: alter collecting all coins, the player

can go to this area to complete the level.

In the Widget, create a new boolean variable to represent succeeded value
and a blueprint to bind the correct message based on variable value;

4Functions (34 Overridable

f GetText_D
= Get Text0

Macros 8 Return Node

4Variables » f = »

’ @ Return Value
Event Dispatchers /

Local Variables (cetText 0 3+ Select

False | Game Over! | - Return Value
1 Details
True

Ho- [Level Completed] ~

4 Variable
Variable Nam
ce Edi

Mission Succeeded Index

EXY Compiler Results

Level Complete

Level complete area: alter collecting all coins, the player can
go to this area to complete the level.

Now we need a class to create the widget that exist only once on the
clients: Game Controller.

— Create the widget in a new Game Controller class;

U
Choose Parent Class

This will add a C++ header and source code file to your game project. B show All Classes

. Player Controller
is an a

A Player C

Selected Class Player Controller
Selected Class Source PlayerController.h

Level Complete

* Level complete area: alter collecting all coins, the player can go
to this area to complete the level.

— Create and expose a OnlLevelCompleted function to blueprint
implementation:

MyPlayerController.h
public:
UFUNCTION (BlueprintImplementableEvent, Category = "Gameplay Events")
vold OnLevelCompleted (APawn* charact, bool succeeded);

— Create a blueprint for the new player controller and implement the event:

)
. ;[;] _f Add to Viewport
¥ Create Widget Blueprint End Mission Widget Target is User Widge

<> Event On Level Completed

> > »
=il

Return Value Target
Charact Widget Blueprin -

Succeeded Owning Player

Mission Succeeded

void AMyGameStateBase::MulticastOnLevelComplete Implementation (APawn*
character, bool succeeded) {
1f (succeeded) {
for (FConstPawnlIterator i1t = GetWorld()->GetPawnlterator ()
1t; 1t++) {

APawn* pawn = it->Get () ; MyGameStateBase.cpp

1f (pawn && pawn->IsLocallyControlled()) {

pawn->DisableInput (nullptr);

}
for (FConstPlayerControllerIterator it = GetWorld()->

GetPlayerControllerIterator (), it; it++) {
AMyPlayerController* pController =
Cast<AMyPlayerController> (1it->Get ());
if ((pController) && (pController->IsLocalController())) {
pController->0OnlevelCompleted (character, succeeded);

}

else(
if (character) {
character->DisableInput (nullptr);
AMyPlayerController* pController =
Cast<AMyPlayerController> (character->GetController())
if ((pController) && (pController->IsLocalController())) {
pController->OnlevelCompleted (character, succeeded);

ooy b)

Level Complete

* Level complete area: alter collecting all coins, the player can go
to this area to complete the level.

— Set the new Player Controller class in the blueprint instance of the Game
Mode:

4 Classes

Game Session Class - 0O X

Game State Class 0O +

Player Controller Class 0O 4+ 2
Player State Class & 0 +

HUD Class m 0O+ x

Default Pawn Class 0D + X
Spectator Class D +

Replay Spectator Player L D +

Server Stat Replicator CI 0O

Level Complete

 Level complete area: if the player goes to the level complete
area without collecting all coins, a sound notification is played.

protected: LevelCompleteArea.h

UPROPERTY (EditDefaultsOnly, Category = "Sounds")
USoundBase* LevelNotCompletedSound;

volid ALevelCompleteArea: :HandleBeginOverlap(...) { LevelCompleteArea.cpp
1f ((character) && (gamestate)) {
1f (character->GetTotalColins ()== gamestate->GetTotallevelCoins{()) {

gamestate->MulticastOnLevelComplete (character, true);

}

else{
UGameplayStatics::PlaySound2D(this, LevelNotCompletedSound) ;

}

Enemies

* Next step: create an enemy with Al that walks between
waypoints. When the enemy sees the player, he follows and

attacks the player.
— Create new C++ class for the enemy: base class Character

u Add C++ Class
Choose Parent Class

This will add a C++ header and source code file to your game project.

O None

.. Character
A character is a type of Pawn that includes the ability to walk around.

i Pawn

A Pawn is an actor that can be 'possessed’ and receive input from a controller.

® Actor

An Actor is an object that can be placed or spawned in the world.

€, Actor Component

Selected Class
Selected Class Source Character

— Download and import the enemy model:
* http://www.inf.puc-rio.br/~elima/dp/zombie.zip

http://www.inf.puc-rio.br/~elima/dp/zombie.zip

Enemies

* Next step: create an enemy with Al.

— Create and setup a blueprint for the new C++ enemy class:

u,—.—psﬁm:—n\ e =0 X

File Edit Asset View Debug Window Help Enemy Character

-3- Components @ ‘ _“ Deta
ﬁ’ ! > ﬁzt. a ': Bl No debug object selected v Searéh fo) E S

+Add Component:=

Compile Save Browse Find Class Settings Class Defaults = Simulation ~ Play. Debug Filter
f BP_Enemy(self)

= Viewport f Construction Scrip m= Event Graph 4 Transform
4 0 capsuleComponent (Inherited)

& ArrowComponent (Inherited)
Mesh (Inherited) Rotation ¥

f CharacterMovement (Inherited) ale v

-~ i < Location ¥

4 Sockets

Parent Socket

M My Blueprint 4 Animation

Animation Mode

+ Add New v [E

zombie_Anim

€ 0O

4Graphs
P Anim to Play
EventGraph
© Event BeginPlay
© Event ActorBeginOverlap Looping
€ Event Tick Playing
4Functions T f Initial Position
-,
f ConstructionScript | Disable Post Prof
Macros
Variables 4 Mesh
Event Dispatchers 1 \ Gombia

€ 0~

4 Materials

% 01_-_Default
€ 0O

Element 0

4 Clothing
Disable Cloth Simulation [l

Collide with Environment [l

Enemies

* Next step: create an enemy with Al.

— Add a Nav Mesh Bounds Volume and resize it so that it fits all of the
walkable space in the level (press P to show the Nav Mesh):

AL L THirdPErsonERamplEMApE: M BP Enemy -
File Edit Window Help

F— r -

Rir Modes . * m u g: Zg (11 World Gutliner:
~y “, == m - = v . - g - ;

q - ” Save Current Source Control Content Marketplace = Settings Blueprints Cinematics Build Compile = Play

< NavMeshBoundsVolume ~ NavMeshBound

. . @ RecastNavMesh-Default RecastNavMe
Nav Mesh Bounds Volume < = ® SkySphereBlueprint Edit BP_Sky.
hold (Ctrl + Alt) for more TargetPoint TargetPc

TargetPoint2
¥ TargetPoint3

CJ
®" NavMesh Bounds Volume

37 actors (1 selected) @ View Options

3. Details @ World Settings

¥ NavMeshBoundsVolume 'S
Search fe) E o~

4 Brush Settings
200.0 &
200.0 o

lirdParsongcanplaitip (P2

Hollow
&= Content Browser EX output Log
Tessellated

i AddNew~ X Import Save All € 5 | & Content » Blueprints

. .

1 selected in Persistent Level

4
-Content Convert Actor Select a Type -

Characters 4 Can be Damaged [}
W Geometry =
" Mannequin

b i ParagonMinions e C r initial Life span (TS
. sound EREGROCIEILEGEY Try To Adjust Location, Don't Sw
U i StarterContent =

. ThirdPerson e

U i ThirdPersonCPP HLOD
=u 5 items (1 selected) © View Options v

Generate Overlap £ [l}

Mahile

Enemies

* Next step: create an enemy with Al.

— Place some waypoints (Target Point) in the level:

AL STTTaPE e oNEXAMPIEMEDE T M BP Enemy

File Edit Window Help

R Modes | ! ‘ : u ==) g) (({5 : 'g) Sug 4 >) = World outliner

~ N/ B E . -
’ - Save Current Source Control Content Marketplace Settings Blueprints Cinematics Build Compile Play

[— — — Label ype

target] X k . g ® RecastNavMesh-Default Recasth

® skysphereBlueprint Edit BF

@ Tiarget Point " TargetPoint
= TargetPoint2

Target Point V 3 TargetPoint3
o = TargetPoint4

> 3 TargetPoint5]
<) 5 TargetPoint6 TargetPoint
& Al

TargetPoint7 T stPoint

37 actors (1 selected) @ View Options ¥

3. Details @ World Settings

TargetPoint6 'S

4+ Add Component~ « Blueprint/Add Scrip!

4 Cooking
Leysl: ThirdParsonEcunplanl
&= Content Browser. X Output Log 4 Input

I AddNew~ X Import € 9 | & Content » Blueprints Auto Receive Input [BIEEEIZY X
input priority (S

4 Actor
1 selected in Persistent Level

YFilters = arch Blueprints

Convert Actor

B Mannequin 3 e B r Can be Damaged [}
W ParagonMinions
ound

i StarterContent initial Life span (GGG
I ThirdPerson e

S| Colli LB Always Spawn, Ignore Collision v
. ThirdPersonCPP pawn Colllsion s Spawn. 1o

- ul 5 items (1 selected) @ View Options v -

Generate Overlap £ [l

Enemies

* Next step: create an enemy with Al.

EnemyCharacter.h

protected:

TArray<AActor*> Waypoints;

class AAIController* AIController;
TScriptDelegate<FWeakObjectPtr> MovementCompleteDelegate;
class ATargetPoint* GetRandomWaypoint () ;

UFUNCTION ()
void AIMoveCompleted (FAIRequestID RequestlID,
EPathFollowingResult::Type Result);

#include "Engine/TargetPoint.h"

Enemies

* Next step: create an enemy with Al.

EnemyCharacter.cpp

#include "AIController.h"

void AEnemyCharacter::BeginPlay ()

{

Super: :BeginPlay () ;
UGameplayStatics: :GetAllActorsOfClass (GetWorld(),

ATargetPoint::StaticClass (), Waypoints);
AIController = Cast<AAIController> (GetController()):;
this->bUseControllerRotationYaw = false;

1if ((Waypoints.Num() > 0)&& (AIController)) {
MovementCompleteDelegate.BindUFunction (this, "AIMoveCompleted") ;
AIController->ReceiveMoveCompleted.Add (MovementCompleteDelegate) ;

AIController->MoveToActor (GetRandomWaypoint ()) ;

Important: the AIModule must be included as a public dependency.

Enemies

* Next step: create an enemy with Al.

EnemyCharacter.cpp
ATargetPoint* AEnemyCharacter: :GetRandomWaypoint ()

{
int index = FMath::RandRange (0, Waypoints.Num() - 1);
return Cast<ATargetPoint> (Waypoints[index]) ;

void AEnemyCharacter: :AIMoveCompleted (FAIRequestID RequestID,
EPathFollowingResult::Type Result) {
1if (Result == EPathFollowingResult::Success)
{
if ((Waypoints.Num() > 0) && (AIController))

{
AIController->MoveToActor (GetRandomWaypoint ()) ;

Enemies

Next step: create an enemy with Al.

— Adjust max speed and rotation settings in the CharacterMovement
component:

u ThirdPersonExampleMap o [=0x

File Edit Asset View Debug Window Help Enemy Character

-=. Components I y . @ ‘ a v 1‘ > 3\ Details
% | %y = B BP_Enemy~ e} .
PR CEmpEnEnts % - W O~ . Eo-
Compile Save Browse Find Class Settings Class Defaults: = Simulation HE Debug Filter Buoyancy [0]
v

f Construction Scrif Event Graph
4 0§ capsuleComponent (Inherited) - 4 Character Movement: Flying

R\ ArrowComponent (Inherited) £ Max Fly Speed 600.0
1 Mesh (Inherited)
Braking Deceleration Fiyin (CENNS)
. CharacterMovement (Inherited)

f BP_Enemy(self)

4 Character Movement: Custom Movement

Max Custom Movement S [[uly] D

4 Character Movement (Rotation Settings)

M My Blueprint
+ Add New v [EEEIGE o) ©®~

“craphs . C—
Eventoraph T

© Event BeginPlay Use Controller Desired Rot [l 2
© Event ActorBeginOverlap

© Event Tick Orient Rotation to Movem [=
4Functions t ; 4 Character Movement (Networking)

-,
f ConstructionScript Network Skip Proxy Predic [l

Macros Network Max Smooth Upd
Variables Network No Smooth Updal
Event Dispatchers Network Smoothing Mode
Network Min Time Betwee
Network Min Time Betwee
Network Min Time Betwee (CECES)
Network Large Client Corre (S

i
4 Character Movement: Physics Interaction
Enable Physics Interactiot
Touch Force Scaled to Ma
Push Force Scaled to Mas [}
Push Force Using ZOffset [l

Scale Push Force to Veloc

Enemies

* Next step: create an enemy with Al.

— Add a SensingComponent to allow the enemy to see the player:

protected: EnemyCharacter.h

UPROPERTY (VisibleAnywhere, Category = "Components")
class UPawnSensingComponent* SensingComponent;

AActor* target;

UFUNCTION ()
void SeePlayer (APawn *pawn);

Enemies

* Next step: create an enemy with Al.

— Add a SensingComponent to allow the enemy to see the player:

AEnemyCharacter: :AEnemyCharacter () EnemyCharacter.cpp
{
SensingComponent = CreateDefaultSubobject<UPawnSensingComponent>
("SensingComponent") ;
SensingComponent->0OnSeePawn.AddDynamic (this,
&AEnemyCharacter: :SeePlayer) ;
SensingComponent->SetSensingUpdatesEnabled (true) ;
}
void AEnemyCharacter::SeePlayer (APawn *pawn)
{
1f ((pawn) && (AIController) && (!target)) {
target = pawn;
this->GetMesh () ->GlobalAnimRateScale = 2.5f;
this->GetCharacterMovement () —>MaxWalkSpeed = 150.0f;
AIController->MoveToActor (pawn) ;

Enemies

* Next step: create an enemy with Al.

— Add a SensingComponent to allow the enemy to see the player:

EnemyCharacter.cpp
void AEnemyCharacter::Tick(float DeltaTime)

{
Super::Tick (DeltaTime) ;
if (target)
{
if (FVector::Dist (GetActorLocation (), target->GetActorLocation())
> SensingComponent->SightRadius)

this->GetMesh () ->GlobalAnimRateScale = 1.0f;
this->GetCharacterMovement () —>MaxWalkSpeed = 50;
target = nullptr;

AIController->MoveToActor (GetRandomWaypoint ()) ;

Enemies

Next step: create an enemy with Al.
— Adjust the sight properties in the enemy blueprint:

U ThirdPersonExampleMap

File Edit Asset View Debug

Components:

+Add Component =
§ BP_Enemy(self)

4 § capsuleComponent (Inherited)
A ArrowComponent (Inherited)
¥ Mesh (Inherited)

f CharacterMovement (Inherited)

SensingComponent (Inherited)

M My Blueprint

+ Add New v [EIE o) ©®~

4Graphs +
4% EventGraph
© Event BeginPlay
© Event ActorBeginOverlap
© Event Tick
4Functions
»” ConstructionScript
Macros

Variables

Event Dispatchers

M EPIEREmY) h
Window Help

vl A

&
Compile Save Browse Find
= Viewport f Construction Scrig

-

m= Event Graph

Simulation

Play

a ' | 1‘ > M No debug object selected v

Class Settings Class Defaults

Debug Filter

Details

@ =0 X

Enemy Character

Y - [o -

4 Variable
Variable Name

Tooltip

Editable when Inherited

4 sockets

Parent Socket

4 Al
Hearing Threshold
LOSHearing Threshold
Sight Radius
Sel ng Interval
Hearing Max Sound Age
Enable Sensing Updates
Only Sense Players
See Pawns
Hear Noises

Peripheral Vision Angle

4 Tags

Component Tags

4 Component Replication

Component Replicates

4 Cooking
Is Editor Only

4 Events
€ 0n See Pawn

€ 0On Hear Noise

SensingComponent

©
=
S
o
i
g o

u

(13000 o}
13000 o
S
(o]
E——

o

0 Array elements <+ @

Enemies

* Next step: create an enemy with Al.

— If the enemy gets to the player position, show the game over message:

void AEnemyCharacter: :AIMoveCompleted (FAIRequestID RequestID,
EPathFollowingResult: :Type Result) {
if (Result == EPathFollowingResult::Success) {
if (target) {
AMyCharacter* character = Cast<AMyCharacter> (target):;
AMyGameStateBase* gamestate = Cast<AMyGameStateBase> (GetWorld ()
->GetGameState()) s
if ((character) && (gamestate)) {
gamestate->MulticastOnLevelComplete (character, false);
}
target = nullptr;
}
1f ((Waypoints.Num() > 0) && (AIController)) {
AIController->MoveToActor (GetRandomWaypoint ()) ;

Enemies

* Next step: create an enemy with Al.

— We need to manually synchronize the animation speed with all clients.

— Solution: create a variable to represent a chasing state and replicate it
to all clients:

protected:

EnemyCharacter.h
UPROPERTY (Replicated)
bool isChasing;
#include "UnrealNetwork.h" EnemyCharacter.cpp

void AEnemyCharacter::GetLifetimeReplicatedProps (TArray
<FLifetimeProperty>& OutLifetimeProps) const
{
Super: :GetLifetimeReplicatedProps (OutLifetimeProps) ;
DOREPLIFETIME (AEnemyCharacter, isChasing);

Enemies

EnemyCharacter.cpp
AEnemyCharacter: :AEnemyCharacter () {

1isChasing = false;
SetReplicates (true) ;

void AEnemyCharacter::SeePlayer (APawn *pawn)

{
if ((pawn) && (AIController) && (!target))

{

isChasing = true;

Enemies

void AEnemyCharacter::Tick (float DeltaTime) { EnemyCharacter.cpp
Super::Tick (DeltaTime) ;
1f ((target) && (Role == ROLE Authority)) {
if (FVector::Dist (GetActorLocation(),
target->GetActorLocation()) > SensingComponent->SightRadius) {
1isChasing = false;
}
}
if ((isChasing) && (this->GetMesh ()->GlobalAnimRateScale != 2.5f)) {

this->GetMesh () -—>GlobalAnimRateScale = 2.5f;
this->GetCharacterMovement () ->MaxWalkSpeed = 150.0f;
}
else 1if (this->GetMesh () ->GlobalAnimRateScale != 1.0f) {
this->GetMesh () ->GlobalAnimRateScale = 1.0f;
this->GetCharacterMovement () ->MaxWalkSpeed = 50.0f;

1)

Exercise 1

Continue the implementation of the game:

a) Play a sound effect when a coin is collected.

b) Count the number of remaining coins only on the server and
synchronize the events of “collecting coins” on all clients.

. In our current implementation, the coins are being counted locally by the clients.
If there is small desynchronization in the position of players, the whole game will
get desynchronized.

c) Count the number of coins collected by each player.

d) Improve the level by adding more coins, more enemies, more
waypoints, and adjusting the position of the coins, enemies and
waypoints. In addition, balance the gameplay by adjusting the speed
of the enemies according to the speed of the player.

Further Reading

* C(Carnall, B.(2016). Unreal Engine 4.X By Example. Packt
Publishing. ISBN: 978-1785885532.

e Web Resources:

Unreal Engine 4.X
By Example

— Introduction to C++ Programmingin UE4 -
https://docs.unrealengine.com/en-US/Programming/Introduction

PACKT
— Coding Standard - https://docs.unrealengine.com/en-

US/Programming/Development/CodingStandard

— Gameplay Programming - https://docs.unrealengine.com/en-
us/Programming/UnrealArchitecture

— Networking and Multiplayer in Unreal Engine -
https://docs.unrealengine.com/en-us/Gameplay/Networking

— Network Guide -
https://wiki.unrealengine.com/index.php?title=4 13%2B Networ
k Guide

https://docs.unrealengine.com/en-US/Programming/Introduction
https://docs.unrealengine.com/en-US/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/UnrealArchitecture
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://wiki.unrealengine.com/index.php?title=4_13%2B_Network_Guide

