Computer Graphics

Lecture 09 — Textures and Materials

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

Materials, Shaders and Textures

* Materials: define how a surface should be rendered, including
references to textures, tiling information, color, etc.
— The options available depend on which Shader the Material is using.

e Shaders: small scripts that contain the mathematical
calculations and algorithms for calculating the color of each
pixel rendered, based on the lighting input and the Material
configuration.

* Textures: are bitmap images.

— A Material can contain references to textures, so that the Material’s
Shader can use the textures while calculating the surface color.

— Textures can also represent other aspects of a Material’s surface such
as its reflectivity or roughness.

Unity Standard Shader

e Standard Shader: built-in shader with a comprehensive set of
features.

— Supports reflection, bump mapping, occlusion mapping, emission,
transparency, shadows, indirect light, etc.

— Physically Based Shading: render objects in a way that accurately
simulates the flow of light of the real world.

— Example of scene rendered using the standard shader on all models:

Standard Shader: Content and Context

 The appearance of material based on the Standard Shader is
influenced by the content and context of the scene.
— Context: light sources, skybox, indirect light, etc.
— Content: scene objects, textures, etc.

 Example of scene with variations in context:

Metallic vs. Specular Workflow

 There are two options of workflow when creating a material
using the Standard shader: "Standard" and "Standard
(Specular setup)”.

— Standard (Metallic setup): the shader exposes a “metallic” value that
states whether the material is metallic or not.

* The Albedo color will control the color of the specular reflection and most light will
be reflected as specular reflections.

— Standard (Specular setup): a specular color is used to control the color
and strength of specular reflections in the material.

* This makes it possible to have a specular reflection of a different color than the
diffuse reflection for instance.

Metallic vs. Specular Workflow

" © Inspector | 2% [® nspector | P
Rubber - Rubber # -
. Shader | Standard v || Edit... | . Shader | Standard (Specular setup) = || Edit... |
Rendering Mode | opague $ Rendering Mode | Opague ™
Main Maps Main Maps
o Albedo . o Albedo .
@ Metallic Cr 0 o Specular .
Smoothness 0338 | Smoothness 0338 |
@ Marmal Map @ Mormal Map
@ Height Map @ Height Map
© Occlusion © Occlusion
@ Emission 0 @ Emission 0
@ Detail Mask @ Detail Mask
Tiling X1 ¥(1 Tiling X(1 Y(1
Offset X |0 Y |0 - Offset X |0 Y |0 -
v b

Standard Shader

' © Inspector | .=
° Pa ramete rs: J New Material 1 {_re,

Shader | Standard

— Rendering Mode ::i:e::ifm [Ssaaue /]
o Albedo -
- AledO Gal:tatljlic ®. |
Smoothness 0.5
— Specular Mode: Specular o Normal Map
@ Height Map
— Metallic Mode: Metallic © occlusen :
@ Detail Maslk
— Smoothness Tiing " .,
Offset X0 Y0

— Normal Map (Bump Mapping) T

© Detail Albedo x2

— Height Map (Parallax Mapping) o Normal ap ;

Tiling w1 e
1 Offset %o v o
— Occlusion Map 0V set (o -
- EmiSSion 'New Material 1

— Detail Mask & Maps

Textures: http://www.inf.puc-rio.br/~elima/cg/textures.html

http://www.inf.puc-rio.br/~elima/cg/textures.html

Standard Shader: Rendering Mode

* Rendering Mode: defines whether the
object uses transparency, and if so,
which type of blending mode to use.

— Opaque: suitable for normal solid objects with
no transparent areas.

— Cutout: used to create a transparent effect that
has hard edges between the opaque and
transparent areas. Useful to create leaves or
cloth with holes.

— Transparent: suitable for rendering realistic
transparent materials such as clear plastic or
glass. Reflections and lighting highlights will
remain visible.

— Fade: allows the transparency values to
entirely fade an object out, including any
specular highlights or reflections it may have.

Standard Shader: Rendering Mode

e Cutout Mode — Example

Mocwmae on Flay Mo svbe Mats Gimes

Standard Shader: Rendering Mode

* Transparent Mode — Example

% Scene € Game *3 Animator B © nspector RHITEE
Shaded =|j20)] & |4 & - Gizmos = (=T char_astrella_glass_mat Qe
Shader Standard

Rendering Mode Transpacent 3

Main Maps
BB o Albedo -

© Metallic (o | 0.8000C

SMOOthNEES s 5 0.96

. O Normal Map 05
© Meight Map
© Occlusion
© Emission
© Detail Mask
Tiling X1
Offset

< <
ol

char_astrella_glass_mat

Standard Shader: Rendering Mode

* Transparent Mode — Example with fully opaque areas

Standard Shader: Rendering Mode

 Fade Mode — Example

Standard Shader: Albedo

 Albedo: defines the base color or
texture of the material.

* The alpha value of the Albedo color
controls the transparency level for the
material.

— This only has an effect if the Rendering
Mode for the material is not set to

opaque.

Standard Shader: Albedo

Transparencies in areas of the material must be specified
in the texture alpha channel.

O Inspector | e O Inspector | Aem|
p a3 & & : A g o, 4
— Broken Window Import Settings G e Broken Window Import Sattings %)
Open_ Opea
Texture Type | Texture L Texture Type | Texture il
Alpha from Grayscale [] Alpha from Grayscale |]
Alpha Is Transparency [] Alpha 1s Transparency []
Wrap Mode | Repaat N Wrap Maode | Repeat 4 |
Filter Mode | Bilinear 3 Filter Mode | Bilinear :)
Aniso Level - 1 Aniso Level - 1
Default @ Ll D 4 o E D B Default @ s D 3 o ﬂ D a
Max Size 2048 i Max Size 2048 |
Format Compressed) Format Comprassed) } "’
Broken Window ——————— 0 4, Broken Window —————7———— "]

1024%256 sRGB RGBA Compressed DXTS 341.4 KB 1024%256 sRGB RGBA Compressed DXTS 341.4 KB

Standard Shader: Albedo

* Transparencies in areas of the material must be specified
in the texture alpha channel.

Standard Shader: Specular

* Specular (Specular Mode): represents [
the direct reflections of light sources, | e s
which typically show up as bright
highlights on the surface of objects.

|_|a5pecular

Smoothness

Standard Shader: Specular

* The color of the Specular parameter controls the strength and
color of the specular reflectivity.

* The Smoothness parameter controls the clarity of the specular
effect.

— Low smoothness value = even strong specular reflections appear
blurred and diffuse.

— High smoothness value = specular reflections are crisper and clearer.

Rough Plastic

Dirt
Rubber Mud

Brushed Metal

Standard Shader: Metallic

* Metallic (Metallic Mode): specular
reflections arise naturally depending
on the settings of the Metallic and
Smoothness levels (rather than being
explicitly defined as in the specular
mode).

 Example:

Standard Shader: Metallic

* The metallic parameter determines how “metal-like” the
surface is.

— When a surface is more metallic, it reflects the environment more and
its albedo color becomes less visible.

— When a surface is less metallic, its albedo color is more clear and any
surface reflections are visible on top of the surface color.

Standard Shader: Smoothness

Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

Low Smoothness:

Standard Shader: Smoothness

Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

Median Smoothness:

Standard Shader: Smoothness

Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

High Smoothness:

Standard Shader: Normal Map

 Normal Map (Bump Mapping): adds
surface detail such as bumps, grooves,
and scratches to a model which catch
the light as if they are represented by
real geometry.

 Example of Normal Map texture:

— N

: : ‘ t
L
¢ N ~ '3
:)

\ v ,

g -;‘ e
f \

\

s"“{"‘? = =

Standard Shader: Normal Map

 Example: screws in metal surface (without bump mapping)

Standard Shader: Normal Map

 Example: screws in metal surface (with bump mapping)

#t scene © Inspector ' B
.J Shaded “ll20]] % |)| & -] | Gizmos -| (GoAT) . MetalAircraftRivets_NRM Imporl @ %
hla L ALE ALY i T e —
: k Open '
B \# Texture Type | Mormal map 4]L
p Create from Grayscil¥ v

MetalAircraftRivets NRM — v, o

o

CTORCT R e e 1Y

Lo K R AL K R AL L Sl el e R S LK S)

-
.
-
-
-
>
>
>
-
>
>
>
>

102431024 Linear DXTnm . 143 MB|

Standard Shader: Normal Map

 Bump mapping is a technique for simulating bumps on the
surface of an object. This is achieved by perturbing the
surface normals of the object and using the perturbed
normal during lighting calculations.

e What are Surface Normals?

Standard Shader: Normal Map

e What are Surface Normals?

Flat Surface:

Smooth Surface:

/// \\\

Standard Shader: Normal Map

 What is Normal Mapping?

hI

Standard Shader: Normal Map

 What is Normal Mapping?

Scene © Inspector
Shaded |1 20|] % | <) | & -] Gizmos -| @Al)| Simple Bumpmap Example @ #.

Shader | Standard v

:'I'i'erid"éﬁﬁd“ ﬁoi{oiﬂ | Opaque :]

'pm do 12

oM Om——(0 |
. moothness—o— 0.5

EoNormal Map 1

x_ ’o Helghtmp

f— o Occlumon

Sacomiary Maps
r o Detail Albedo x

~ oNormal Map. T

Standard Shader: Normal Map

* How do | get or make normal maps?
— During the 3D modelling process:
* Very high resolution model + lower resolution “game ready” model.

— From a texture:
* ShaderMap - http://shadermap.com/

— Can be produced by hand.

http://shadermap.com/

Standard Shader: Normal Map

 Result:

Without Normal Mapping

Standard Shader: Normal Map

 Result:

With Normal Mapping (directional light)

Standard Shader: Normal Map

e Result:

With Normal Mapping (point light)

Standard Shader: Height Map

* Height Map: as normal maps, height
maps add surface details. Are used to
give extra definition to surfaces and
render large bumps and protrusions.

 Example of Height Map texture:

N TNy YT

Standard Shader: Height Map

* Height mapping (also known as parallax
mapping) is a similar concept to normal
mapping, however this technique is more
complex - and therefore also more
performance-expensive.

* While normal mapping modifies the lighting
across the surface of the texture, parallax
height mapping goes a step further and
actually shifts the areas of the visible surface
texture around.

— The effect is drawn onto the surface of the model
and does not modify the actual geometry.

Standard Shader: Height Map

"© Inspector Be=| © Inspector |
Chunky Stone Wall Import Settings #, [Chunky Stone Wall Heightmap Impor (@ #
Open

Texture Type Texture Texture Type Texture
Alpha from Grayscal[_] | Alpha from Grayscal[_]

Chunky Stone Wall
e =

Without Bump Mapping With Normal Mapping With Hight Mapping

Standard Shader: Occlusion Map

Occlusion Map: used to provide
information about which areas of the
model should receive high or low
indirect lighting.

— Example: concave areas usually do not
receive much indirect light.

Example of Occlusion Map texture:

© Inspector
MNew Material 1 &,
J Shader | Standard v
Rendering Made | opague]
Main Maps
. oAlbedo [|2
 oMetallic e o |
Smoothness
" @Normal Map
[e Height Map
@ Occlusion
@ Emission 0
@ Detail Mask
Tiling X1 Y1
Offset ®|0 Y 0
Secondary Maps
@ Detail Albedo x2
" @Normal Map
Tiling X1 Y1
Offset ®|0 Y 0
UV Set [uvo o

Mew Material 1

Standard Shader: Occlusion Map

L S _
Without Occlusion Mapping With Occlusion Mapping

Standard Shader: Emission

Emission: controls color and intensity of
light emitted from the surface. When

an emissive material is used in your
scene, it appears to be a visible source
of light itself.

Example:

(] Inspectar

Mew Material 1 &,
J Shader | Standard 7]
Rendering Mode | Opaque L
Main Maps
 oAlbedo [%
. eMetallic o D
Smoothness
. @Normal Map
[e Height Map
___@o0cclusion
@ Emission 0
@ Detail Mask
Tiling X1 ¥ (1
Offset |0 Y |0
Secondary Maps
. @Detail Albedo x2
@ Normal Map
Tiling X Vol
Offset ® 0 Y0
UV Set [uvo ™

New Material 1

AssetBundle Mane

Standard Shader: Emission

* Itis also possible to assign an emission map texture:

prop_computerStation_i— v,

@ Occlusion

Woemission [2

Global Illumi| Baked =

Standard Shader: Secondary Maps &
Detail Mask

* Secondary Maps: allows the overlay of | Qe s

Shader | Standard

New Material
a second set of textures on top of the

Rendering Mode Opaque
main textures (second Albedo color s
map and a second Normal map). oMeulic O
Smoothness . .,
© Nof’r::ll Cf:ap - ‘
© Height Map
* The reason to use secondary maps is SO
to allow the material to have sharp e e Vi
o . . Offset X0 Y0
detail when viewed up close, while R
also having a normal level of detail i
when viewed from further away. offut X[t ¥
— Without USing d Single extremely hlgh Forward Rendering Options
. Specular Highlights |«
texture map to achieve both goals. Reflections v

Advanced Options
Enable GPU Instancin|

Standard Shader: Secondary Maps &
Detail Mask

* Typical uses for detail textures are: adding skin detail,

adding tiny cracks and lichen growth to brick walls, adding
small scratches to metal containers.

 Example (without secondary maps):

Standard Shader: Secondary Maps &
Detail Mask

* Typical uses for detail textures are: adding skin detail,

adding tiny cracks and lichen growth to brick walls, adding
small scratches to metal containers.

 Example (with secondary maps):

Other Built-in Shaders

FX: Lighting and glass effects.

GUI and Ul: For user interface graphics.

Mobile: Simplified high-performance shader for mobile devices.
Nature: For trees and terrain.

Particles: Particle system effects.

Skybox: For rendering background environments behind all geometry.
Sprites: For use with the 2D sprite system.

Toon: Cartoon-style rendering.

Unlit: For rendering that entirely bypasses all light & shadowing.

Legacy: The large collection of older shaders which were superseded by the Standard Shader.

Exercise 1

1) Update the “Make Your Fantasy Game - Lite” demo scene to
make better use of the Standard Shader features.

— Download: https://assetstore.unity.com/packages/3d/environments/fantasy/make-
your-fantasy-game-lite-8312

— The updated scene must:
. Use normal mapping;
. Improve specular configuration;

— You can find better textures in the asset store. Examples:

. https://assetstore.unity.com/packages/2d/textures-materials/floors/outdoor-
ground-textures-12555

. https://assetstore.unity.com/packages/2d/textures-materials/brick/18-high-
resolution-wall-textures-12567

. https://assetstore.unity.com/packages/2d/textures-materials/concrete/yughues-
free-concrete-materials-12951

https://assetstore.unity.com/packages/3d/environments/fantasy/make-your-fantasy-game-lite-8312
https://assetstore.unity.com/packages/2d/textures-materials/floors/outdoor-ground-textures-12555
https://assetstore.unity.com/packages/2d/textures-materials/brick/18-high-resolution-wall-textures-12567
https://assetstore.unity.com/packages/2d/textures-materials/concrete/yughues-free-concrete-materials-12951

Further Reading

Hughes, J. F., et al. (2013). Computer Graphics: Principles
and Practice (3rd ed.). Upper Saddle River, NJ: Addison-
Wesley Professional. ISBN: 978-0-321-39952-6.

— Chapter 20: Textures and Texture Mapping;

Marschner, S., et al. (2015). Fundamentals of Computer
Graphics (4th ed.). A K Peters/CRC Press. ISBN: 978-
1482229394,

— Chapter 11: Texture Mapping

Web:
— https://docs.unity3d.com/Manual/Shaders.html

COMPUTER GRAPHICS

Fundamentals
of Computer Graphics

https://docs.unity3d.com/Manual/Shaders.html

