
Computer Graphics

Edirlei Soares de Lima

<edirlei.lima@universidadeeuropeia.pt>

Lecture 09 – Textures and Materials

Materials, Shaders and Textures

• Materials: define how a surface should be rendered, including
references to textures, tiling information, color, etc.
– The options available depend on which Shader the Material is using.

• Shaders: small scripts that contain the mathematical
calculations and algorithms for calculating the color of each
pixel rendered, based on the lighting input and the Material
configuration.

• Textures: are bitmap images.
– A Material can contain references to textures, so that the Material’s

Shader can use the textures while calculating the surface color.
– Textures can also represent other aspects of a Material’s surface such

as its reflectivity or roughness.

Unity Standard Shader

• Standard Shader: built-in shader with a comprehensive set of
features.
– Supports reflection, bump mapping, occlusion mapping, emission,

transparency, shadows, indirect light, etc.

– Physically Based Shading: render objects in a way that accurately
simulates the flow of light of the real world.

– Example of scene rendered using the standard shader on all models:

Standard Shader: Content and Context

• The appearance of material based on the Standard Shader is
influenced by the content and context of the scene.
– Context: light sources, skybox, indirect light, etc.

– Content: scene objects, textures, etc.

• Example of scene with variations in context:

Metallic vs. Specular Workflow

• There are two options of workflow when creating a material
using the Standard shader: "Standard" and "Standard
(Specular setup)“.

– Standard (Metallic setup): the shader exposes a “metallic” value that
states whether the material is metallic or not.
• The Albedo color will control the color of the specular reflection and most light will

be reflected as specular reflections.

– Standard (Specular setup): a specular color is used to control the color
and strength of specular reflections in the material.
• This makes it possible to have a specular reflection of a different color than the

diffuse reflection for instance.

Metallic vs. Specular Workflow

Standard Shader

• Parameters:
– Rendering Mode

– Albedo

– Specular Mode: Specular

– Metallic Mode: Metallic

– Smoothness

– Normal Map (Bump Mapping)

– Height Map (Parallax Mapping)

– Occlusion Map

– Emission

– Detail Mask & Maps

Textures: http://www.inf.puc-rio.br/~elima/cg/textures.html

http://www.inf.puc-rio.br/~elima/cg/textures.html

Standard Shader: Rendering Mode

• Rendering Mode: defines whether the
object uses transparency, and if so,
which type of blending mode to use.
– Opaque: suitable for normal solid objects with

no transparent areas.

– Cutout: used to create a transparent effect that
has hard edges between the opaque and
transparent areas. Useful to create leaves or
cloth with holes.

– Transparent: suitable for rendering realistic
transparent materials such as clear plastic or
glass. Reflections and lighting highlights will
remain visible.

– Fade: allows the transparency values to
entirely fade an object out, including any
specular highlights or reflections it may have.

Standard Shader: Rendering Mode

• Cutout Mode – Example

Standard Shader: Rendering Mode

• Transparent Mode – Example

Standard Shader: Rendering Mode

• Transparent Mode – Example with fully opaque areas

Standard Shader: Rendering Mode

• Fade Mode – Example

Standard Shader: Albedo

• Albedo: defines the base color or
texture of the material.

• The alpha value of the Albedo color
controls the transparency level for the
material.
– This only has an effect if the Rendering

Mode for the material is not set to
opaque.

Standard Shader: Albedo

• Transparencies in areas of the material must be specified
in the texture alpha channel.

Standard Shader: Albedo

• Transparencies in areas of the material must be specified
in the texture alpha channel.

Standard Shader: Specular

• Specular (Specular Mode): represents
the direct reflections of light sources,
which typically show up as bright
highlights on the surface of objects.

• Example:

Standard Shader: Specular

• The color of the Specular parameter controls the strength and
color of the specular reflectivity.

• The Smoothness parameter controls the clarity of the specular
effect.
– Low smoothness value = even strong specular reflections appear

blurred and diffuse.

– High smoothness value = specular reflections are crisper and clearer.

Standard Shader: Metallic

• Metallic (Metallic Mode): specular
reflections arise naturally depending
on the settings of the Metallic and
Smoothness levels (rather than being
explicitly defined as in the specular
mode).

• Example:

Standard Shader: Metallic

• The metallic parameter determines how “metal-like” the
surface is.
– When a surface is more metallic, it reflects the environment more and

its albedo color becomes less visible.

– When a surface is less metallic, its albedo color is more clear and any
surface reflections are visible on top of the surface color.

Standard Shader: Smoothness

• Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

• Low Smoothness:

• Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

• Median Smoothness:

Standard Shader: Smoothness

• Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

• High Smoothness:

Standard Shader: Smoothness

• Normal Map (Bump Mapping): adds
surface detail such as bumps, grooves,
and scratches to a model which catch
the light as if they are represented by
real geometry.

• Example of Normal Map texture:

Standard Shader: Normal Map

• Example: screws in metal surface (without bump mapping)

Standard Shader: Normal Map

• Example: screws in metal surface (with bump mapping)

Standard Shader: Normal Map

Standard Shader: Normal Map

• Bump mapping is a technique for simulating bumps on the
surface of an object. This is achieved by perturbing the
surface normals of the object and using the perturbed
normal during lighting calculations.

• What are Surface Normals?

Standard Shader: Normal Map

• What are Surface Normals?

Flat Surface:

Smooth Surface:

Standard Shader: Normal Map

• What is Normal Mapping?

Standard Shader: Normal Map

• What is Normal Mapping?

Standard Shader: Normal Map

• How do I get or make normal maps?

– During the 3D modelling process:
• Very high resolution model + lower resolution “game ready” model.

– From a texture:
• ShaderMap - http://shadermap.com/

– Can be produced by hand.

http://shadermap.com/

Standard Shader: Normal Map

• Result:

Without Normal Mapping

Standard Shader: Normal Map

• Result:

With Normal Mapping (directional light)

Standard Shader: Normal Map

• Result:

With Normal Mapping (point light)

• Height Map: as normal maps, height
maps add surface details. Are used to
give extra definition to surfaces and
render large bumps and protrusions.

• Example of Height Map texture:

Standard Shader: Height Map

• Height mapping (also known as parallax
mapping) is a similar concept to normal
mapping, however this technique is more
complex - and therefore also more
performance-expensive.

• While normal mapping modifies the lighting
across the surface of the texture, parallax
height mapping goes a step further and
actually shifts the areas of the visible surface
texture around.
– The effect is drawn onto the surface of the model

and does not modify the actual geometry.

Standard Shader: Height Map

Standard Shader: Height Map

Without Bump Mapping With Normal Mapping With Hight Mapping

• Occlusion Map: used to provide
information about which areas of the
model should receive high or low
indirect lighting.
– Example: concave areas usually do not

receive much indirect light.

• Example of Occlusion Map texture:

Standard Shader: Occlusion Map

Standard Shader: Occlusion Map

Without Occlusion Mapping With Occlusion Mapping

• Emission: controls color and intensity of
light emitted from the surface. When
an emissive material is used in your
scene, it appears to be a visible source
of light itself.

• Example:

Standard Shader: Emission

• It is also possible to assign an emission map texture:

Standard Shader: Emission

• Secondary Maps: allows the overlay of
a second set of textures on top of the
main textures (second Albedo color
map and a second Normal map).

• The reason to use secondary maps is
to allow the material to have sharp
detail when viewed up close, while
also having a normal level of detail
when viewed from further away.
– Without using a single extremely high

texture map to achieve both goals.

Standard Shader: Secondary Maps &
Detail Mask

• Typical uses for detail textures are: adding skin detail,
adding tiny cracks and lichen growth to brick walls, adding
small scratches to metal containers.

• Example (without secondary maps):

Standard Shader: Secondary Maps &
Detail Mask

• Typical uses for detail textures are: adding skin detail,
adding tiny cracks and lichen growth to brick walls, adding
small scratches to metal containers.

• Example (with secondary maps):

Standard Shader: Secondary Maps &
Detail Mask

Other Built-in Shaders

• FX: Lighting and glass effects.

• GUI and UI: For user interface graphics.

• Mobile: Simplified high-performance shader for mobile devices.

• Nature: For trees and terrain.

• Particles: Particle system effects.

• Skybox: For rendering background environments behind all geometry.

• Sprites: For use with the 2D sprite system.

• Toon: Cartoon-style rendering.

• Unlit: For rendering that entirely bypasses all light & shadowing.

• Legacy: The large collection of older shaders which were superseded by the Standard Shader.

Exercise 1

1) Update the “Make Your Fantasy Game - Lite” demo scene to
make better use of the Standard Shader features.
– Download: https://assetstore.unity.com/packages/3d/environments/fantasy/make-

your-fantasy-game-lite-8312

– The updated scene must:
• Use normal mapping;

• Improve specular configuration;

– You can find better textures in the asset store. Examples:
• https://assetstore.unity.com/packages/2d/textures-materials/floors/outdoor-

ground-textures-12555

• https://assetstore.unity.com/packages/2d/textures-materials/brick/18-high-
resolution-wall-textures-12567

• https://assetstore.unity.com/packages/2d/textures-materials/concrete/yughues-
free-concrete-materials-12951

https://assetstore.unity.com/packages/3d/environments/fantasy/make-your-fantasy-game-lite-8312
https://assetstore.unity.com/packages/2d/textures-materials/floors/outdoor-ground-textures-12555
https://assetstore.unity.com/packages/2d/textures-materials/brick/18-high-resolution-wall-textures-12567
https://assetstore.unity.com/packages/2d/textures-materials/concrete/yughues-free-concrete-materials-12951

Further Reading

• Hughes, J. F., et al. (2013). Computer Graphics: Principles
and Practice (3rd ed.). Upper Saddle River, NJ: Addison-
Wesley Professional. ISBN: 978-0-321-39952-6.

– Chapter 20: Textures and Texture Mapping;

• Marschner, S., et al. (2015). Fundamentals of Computer
Graphics (4th ed.). A K Peters/CRC Press. ISBN: 978-
1482229394.

– Chapter 11: Texture Mapping

• Web:

– https://docs.unity3d.com/Manual/Shaders.html

https://docs.unity3d.com/Manual/Shaders.html

