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Materials, Shaders and Textures

* Materials: define how a surface should be rendered, including
references to textures, tiling information, color, etc.
— The options available depend on which Shader the Material is using.

e Shaders: small scripts that contain the mathematical
calculations and algorithms for calculating the color of each
pixel rendered, based on the lighting input and the Material
configuration.

* Textures: are bitmap images.

— A Material can contain references to textures, so that the Material’s
Shader can use the textures while calculating the surface color.

— Textures can also represent other aspects of a Material’s surface such
as its reflectivity or roughness.



Unity Standard Shader

e Standard Shader: built-in shader with a comprehensive set of
features.

— Supports reflection, bump mapping, occlusion mapping, emission,
transparency, shadows, indirect light, etc.

— Physically Based Shading: render objects in a way that accurately
simulates the flow of light of the real world.

— Example of scene rendered using the standard shader on all models:




Standard Shader: Content and Context

 The appearance of material based on the Standard Shader is
influenced by the content and context of the scene.
— Context: light sources, skybox, indirect light, etc.
— Content: scene objects, textures, etc.

 Example of scene with variations in context:




Metallic vs. Specular Workflow

 There are two options of workflow when creating a material
using the Standard shader: "Standard" and "Standard
(Specular setup)”.

— Standard (Metallic setup): the shader exposes a “metallic” value that
states whether the material is metallic or not.

* The Albedo color will control the color of the specular reflection and most light will
be reflected as specular reflections.

— Standard (Specular setup): a specular color is used to control the color
and strength of specular reflections in the material.

* This makes it possible to have a specular reflection of a different color than the
diffuse reflection for instance.



Metallic vs. Specular Workflow
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Standard Shader
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http://www.inf.puc-rio.br/~elima/cg/textures.html

Standard Shader: Rendering Mode

* Rendering Mode: defines whether the
object uses transparency, and if so,
which type of blending mode to use.

— Opaque: suitable for normal solid objects with
no transparent areas.

— Cutout: used to create a transparent effect that
has hard edges between the opaque and
transparent areas. Useful to create leaves or
cloth with holes.

— Transparent: suitable for rendering realistic
transparent materials such as clear plastic or
glass. Reflections and lighting highlights will
remain visible.

— Fade: allows the transparency values to
entirely fade an object out, including any
specular highlights or reflections it may have.




Standard Shader: Rendering Mode

e Cutout Mode — Example
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Standard Shader: Rendering Mode

* Transparent Mode — Example
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Standard Shader: Rendering Mode

* Transparent Mode — Example with fully opaque areas




Standard Shader: Rendering Mode

 Fade Mode — Example




Standard Shader: Albedo

 Albedo: defines the base color or
texture of the material.

* The alpha value of the Albedo color
controls the transparency level for the
material.

— This only has an effect if the Rendering
Mode for the material is not set to

opaque.




Standard Shader: Albedo

Transparencies in areas of the material must be specified
in the texture alpha channel.
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Standard Shader: Albedo

* Transparencies in areas of the material must be specified
in the texture alpha channel.




Standard Shader: Specular

* Specular (Specular Mode): represents [
the direct reflections of light sources, | e s
which typically show up as bright
highlights on the surface of objects.

|_|a5pecular

Smoothness




Standard Shader: Specular

* The color of the Specular parameter controls the strength and
color of the specular reflectivity.

* The Smoothness parameter controls the clarity of the specular
effect.

— Low smoothness value = even strong specular reflections appear
blurred and diffuse.

— High smoothness value = specular reflections are crisper and clearer.

Rough Plastic

Dirt
Rubber Mud

Brushed Metal



Standard Shader: Metallic

* Metallic (Metallic Mode): specular
reflections arise naturally depending
on the settings of the Metallic and
Smoothness levels (rather than being
explicitly defined as in the specular
mode).

 Example:




Standard Shader: Metallic

* The metallic parameter determines how “metal-like” the
surface is.

— When a surface is more metallic, it reflects the environment more and
its albedo color becomes less visible.

— When a surface is less metallic, its albedo color is more clear and any
surface reflections are visible on top of the surface color.




Standard Shader: Smoothness

Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

Low Smoothness:




Standard Shader: Smoothness

Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

Median Smoothness:




Standard Shader: Smoothness

Smoothness: defines how light scatters when
it hits the surface of the object. Represents
“microsurface details” of the object.

High Smoothness:




Standard Shader: Normal Map

 Normal Map (Bump Mapping): adds
surface detail such as bumps, grooves,
and scratches to a model which catch
the light as if they are represented by
real geometry.

 Example of Normal Map texture:
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Standard Shader: Normal Map

 Example: screws in metal surface (without bump mapping)




Standard Shader: Normal Map

 Example: screws in metal surface (with bump mapping)
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Standard Shader: Normal Map

 Bump mapping is a technique for simulating bumps on the
surface of an object. This is achieved by perturbing the
surface normals of the object and using the perturbed
normal during lighting calculations.

e What are Surface Normals?




Standard Shader: Normal Map

e What are Surface Normals?

Flat Surface:

Smooth Surface:
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Standard Shader: Normal Map

 What is Normal Mapping?

hI




Standard Shader: Normal Map

 What is Normal Mapping?
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Standard Shader: Normal Map

* How do | get or make normal maps?
— During the 3D modelling process:
* Very high resolution model + lower resolution “game ready” model.

— From a texture:
* ShaderMap - http://shadermap.com/

— Can be produced by hand.



http://shadermap.com/

Standard Shader: Normal Map

 Result:

Without Normal Mapping



Standard Shader: Normal Map

 Result:

With Normal Mapping (directional light)



Standard Shader: Normal Map

e Result:

With Normal Mapping (point light)



Standard Shader: Height Map

* Height Map: as normal maps, height
maps add surface details. Are used to
give extra definition to surfaces and
render large bumps and protrusions.

 Example of Height Map texture:
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Standard Shader: Height Map

* Height mapping (also known as parallax
mapping) is a similar concept to normal
mapping, however this technique is more
complex - and therefore also more
performance-expensive.

* While normal mapping modifies the lighting
across the surface of the texture, parallax
height mapping goes a step further and
actually shifts the areas of the visible surface
texture around.

— The effect is drawn onto the surface of the model
and does not modify the actual geometry.




Standard Shader: Height Map
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Standard Shader: Occlusion Map

Occlusion Map: used to provide
information about which areas of the
model should receive high or low
indirect lighting.

— Example: concave areas usually do not
receive much indirect light.

Example of Occlusion Map texture:
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Standard Shader: Occlusion Map
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Standard Shader: Emission

Emission: controls color and intensity of
light emitted from the surface. When

an emissive material is used in your
scene, it appears to be a visible source
of light itself.

Example:
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Standard Shader: Emission

* Itis also possible to assign an emission map texture:
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Standard Shader: Secondary Maps &
Detail Mask

* Secondary Maps: allows the overlay of | Qe s
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Standard Shader: Secondary Maps &
Detail Mask

* Typical uses for detail textures are: adding skin detail,

adding tiny cracks and lichen growth to brick walls, adding
small scratches to metal containers.

 Example (without secondary maps):




Standard Shader: Secondary Maps &
Detail Mask

* Typical uses for detail textures are: adding skin detail,

adding tiny cracks and lichen growth to brick walls, adding
small scratches to metal containers.

 Example (with secondary maps):




Other Built-in Shaders

FX: Lighting and glass effects.

GUI and Ul: For user interface graphics.

Mobile: Simplified high-performance shader for mobile devices.
Nature: For trees and terrain.

Particles: Particle system effects.

Skybox: For rendering background environments behind all geometry.
Sprites: For use with the 2D sprite system.

Toon: Cartoon-style rendering.

Unlit: For rendering that entirely bypasses all light & shadowing.

Legacy: The large collection of older shaders which were superseded by the Standard Shader.



Exercise 1

1) Update the “Make Your Fantasy Game - Lite” demo scene to
make better use of the Standard Shader features.

— Download: https://assetstore.unity.com/packages/3d/environments/fantasy/make-
your-fantasy-game-lite-8312

— The updated scene must:
. Use normal mapping;
. Improve specular configuration;

— You can find better textures in the asset store. Examples:

. https://assetstore.unity.com/packages/2d/textures-materials/floors/outdoor-
ground-textures-12555

. https://assetstore.unity.com/packages/2d/textures-materials/brick/18-high-
resolution-wall-textures-12567

. https://assetstore.unity.com/packages/2d/textures-materials/concrete/yughues-
free-concrete-materials-12951



https://assetstore.unity.com/packages/3d/environments/fantasy/make-your-fantasy-game-lite-8312
https://assetstore.unity.com/packages/2d/textures-materials/floors/outdoor-ground-textures-12555
https://assetstore.unity.com/packages/2d/textures-materials/brick/18-high-resolution-wall-textures-12567
https://assetstore.unity.com/packages/2d/textures-materials/concrete/yughues-free-concrete-materials-12951

Further Reading

Hughes, J. F., et al. (2013). Computer Graphics: Principles
and Practice (3rd ed.). Upper Saddle River, NJ: Addison-
Wesley Professional. ISBN: 978-0-321-39952-6.

— Chapter 20: Textures and Texture Mapping;

Marschner, S., et al. (2015). Fundamentals of Computer
Graphics (4th ed.). A K Peters/CRC Press. ISBN: 978-
1482229394,

— Chapter 11: Texture Mapping

Web:
— https://docs.unity3d.com/Manual/Shaders.html

COMPUTER GRAPHICS

Fundamentals
of Computer Graphics



https://docs.unity3d.com/Manual/Shaders.html

