
Computer Graphics

Edirlei Soares de Lima

<edirlei.lima@universidadeeuropeia.pt>

Lecture 06 – Light

The Physics of Light

• Light is electromagnetic radiation of a frequency that can be
detected by the human eye (visible light).

• From the optics view, light can be seen as electromagnetic
rays that travel in a straight line from its source.
– The light source emits rays of light.

– When the light hits an object, some of the light bounces off the object.

– If the reflected light hits our eyes (or the camera lens) – then we see
the object.

The Physics of Light

• Regular Reflection occurs when the angle at which light
initially hits a surface is equal to the angle at which light
bounces off the same surface.
– It occurs only when the rays fall on a highly smooth surface, such as a

mirror.

• Irregular Reflection occurs when the rays fall on an irregular
surface and are scattered in different directions.

The Physics of Light

The Physics of Light

Surface Normals

• When we simulate light in computer graphics, the object's
surface plays an important role. The surface normal vectors
define how light interacts with the surface.

• To a surface at a point P, the normal is a vector that is
perpendicular to the tangent plane to that surface at P.

P

Normals in Unity Shaders

• In order to access the surface normal in a Shader, we can add
a field to the vertex structure.

struct VertexData {

float4 position : POSITION;

float3 normal : NORMAL;

};

struct VertexToFragment {

float4 position : SV_POSITION;

float3 normal : NORMAL;

};

VertexToFragment MyVertexProgram(VertexData vert) {

VertexToFragment v2f;

v2f.position = UnityObjectToClipPos(vert.position);

v2f.normal = UnityObjectToWorldNormal(vert.normal);

return v2f;

}
Transform the normal from
local space to world space.

Lights in Unity Shaders

• Unity allows Shaders to have direct access to the light sources
in the current scene through built-in variables:

_WorldSpaceLightPos0 : float4 - directional lights (world space

direction)

_LightColor0 : fixed4 - Light color multiplied by the intensity

float4 MyFragmentProgram(VertexToFragment v2f) : SV_TARGET {

...

float3 lightDir = _WorldSpaceLightPos0.xyz;

float4 lightColor = _LightColor0.rgba;

...

}

Defined in "Lighting.cginc“,
which must be included.

Diffuse Shading

• Many objects in the world have a surface appearance that is
not at all shiny (e.g. newspaper, unfinished wood, and dry,
unpolished stones).
– Such objects do not have a color change with a change in viewpoint.

• These objects can be considered as behaving as Lambertian
objects.

Lambertian Shading Model

• Lambertian Shading (Diffuse): the color of a surface is
proportional to the cosine of the angle between the surface
normal and the direction to the light (Lambert’s cosine law).

• where:
– 𝑐 is the pixel color;

– 𝑐𝑟 is the diffuse coefficient, or the surface color;

– 𝑐𝑙 is the intensity of the light source;

– 𝑛 ∙ 𝑙 = cos θ

𝑐 = 𝑐𝑟𝑐𝑙𝑚𝑎𝑥(0, 𝑛 ∙ 𝑙)

Lambertian Shading in Unity

• In order to implement a Lambertian Shader we simply use the
Lambertian equation to compute the color in the fragment
program.

float4 MyFragmentProgram(VertexToFragment v2f) : SV_TARGET{

float3 lightDir = _WorldSpaceLightPos0.xyz;

float4 lightColor = _LightColor0.rgba;

return _Color * lightColor * DotClamped(lightDir,

normalize(v2f.normal));

}

...

Pass{

Tags{

"LightMode" = "ForwardBase"

}

CGPROGRAM

...

We also need to specify the light
mode used by the rendering
pipeline. In this case: ForwardBase.

Avoids negative dot products.

Ambient Shading

• One problem with the Lambertian shading is that any point
whose normal faces away from the light will be black.
– In real life, light is reflected all over, and some light is incident from

every direction.

• A common approach to solve this is to add an ambient term to
the equation:

– Where 𝑐𝑎 is the ambient color.

𝑐 = 𝑐𝑟(𝑐𝑎 + 𝑐𝑙𝑚𝑎𝑥(0, 𝑛 ∙ 𝑙))

Ambient Shading in Unity

• Unity has a built-in variable that
defines the ambient color, which is
defined in the Lightning Settings.

• We can add this variable to the
Lambertian equation.

float4 MyFragmentProgram(VertexToFragment v2f) : SV_TARGET{

float3 lightDir = _WorldSpaceLightPos0.xyz;

float4 lightColor = _LightColor0.rgba;

return _Color * (unity_AmbientSky + (lightColor *

DotClamped(lightDir, normalize(v2f.normal))));

}

unity_AmbientSky : fixed4 - Sky ambient lighting color in gradient

ambient lighting case.

Specular Shading

• Some surfaces have highlights (e.g. polished tile floors, gloss
paint, whiteboards). These highlights have the color of the
light and move across the surface as the viewpoint moves.

• Phong Shading (Specular): describes the way a surface
reflects light as a combination of the diffuse reflection of
rough surfaces with the specular reflection of shiny surfaces.

• where:
– 𝑐 is the pixel color;

– 𝑐𝑙 is the intensity of the light source;

– 𝑒 is the direction to the eye;

– 𝑙 is the direction of the light;

– 𝑝 is the phong exponent;

Phong Shading Model

𝑐 = 𝑐𝑙(ℎ ∙ 𝑛)𝑝 ℎ =
𝑒 + 𝑙

𝑒 + 𝑙

Phong Shading in Unity

• In order to implement a Phong Shader in Unity, we need to
know the direction from the surface to the viewer. This
requires the world-space position of the vertex.

struct VertexToFragment {

float4 position : SV_POSITION;

float3 normal : NORMAL;

float4 worldpos : TEXCOORD2;

};

VertexToFragment MyVertexProgram(VertexData vert) {

VertexToFragment v2f;

v2f.position = UnityObjectToClipPos(vert.position);

v2f.normal = UnityObjectToWorldNormal(vert.normal);

v2f.worldpos = mul(unity_ObjectToWorld, vert.position);

return v2f;

} Transform the vertex position
from local space to world space.

Phong Shading in Unity

• With the vertex position in world space, we can use the Phong
equation in fragment program:

float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET{

float3 lightDir = _WorldSpaceLightPos0.xyz;

float3 viewDir = normalize(_WorldSpaceCameraPos - v2f.worldpos);

float4 lightColor = _LightColor0.rgba;

return lightColor * pow(DotClamped(normalize(lightDir + viewDir),

normalize(v2f.normal)), _Smoothness * 100);

}

Properties

{

_Color("Color", Color) = (1, 1, 1, 1)

_Smoothness("Smoothness", Range(0, 1)) = 0.5

_SpecularColor("Specular", Color) = (0.5, 0.5, 0.5)

}

...

float _Smoothness;

float4 _SpecularColor;

Phong Shading in Unity

• We can also combine of the diffuse reflection of
the Lambertian model with the specular reflection
of the Phong model:

float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET{

float3 lightDir = _WorldSpaceLightPos0.xyz;

float3 viewDir = normalize(_WorldSpaceCameraPos - v2f.worldpos);

float4 lightColor = _LightColor0.rgba;

float4 difuse = _Color * (unity_AmbientSky + (lightColor *

DotClamped(lightDir, normalize(v2f.normal))));

float4 specular = _SpecularColor * lightColor * pow(DotClamped(

normalize(lightDir + viewDir),

normalize(v2f.normal)), _Smoothness * 100);

return difuse + specular;

}

Phong Shading in Unity
• We can also add a texture to the shader:

Properties{

...

_MainTex("Albedo", 2D) = "white" {}

}

...

sampler2D _MainTex;

float4 _MainTex_ST;

struct VertexData {

float4 position : POSITION;

float3 normal : NORMAL;

float2 uv : TEXCOORD0;

};

struct VertexToFragment {

float4 position : SV_POSITION;

float2 uv : TEXCOORD0;

float3 normal : NORMAL;

float4 worldpos : TEXCOORD1;

};

Phong Shading in Unity
• We can also add a texture to the shader:

VertexToFragment MyVertexProgram(VertexData vert) {

VertexToFragment v2f;

v2f.position = UnityObjectToClipPos(vert.position);

v2f.worldpos = mul(unity_ObjectToWorld, vert.position);

v2f.normal = UnityObjectToWorldNormal(vert.normal);

v2f.uv = TRANSFORM_TEX(vert.uv, _MainTex);

return v2f;

}

float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET{

float3 lightDir = _WorldSpaceLightPos0.xyz;

float3 viewDir = normalize(_WorldSpaceCameraPos - v2f.worldpos);

float4 lightColor = _LightColor0.rgba;

float4 albedo = tex2D(_MainTex, v2f.uv).rgba * _Color;

float4 difuse = albedo * (unity_AmbientSky + (lightColor *

DotClamped(lightDir, normalize(v2f.normal))));

float4 specular = _SpecularColor * lightColor * pow(DotClamped(

normalize(lightDir + viewDir),

normalize(v2f.normal)), _Smoothness * 100);

return difuse + specular;

}

Phong Shading in Unity

• Energy conservation problem: when light hits a
surface, only part of it bounces off as specular light.

float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET

float3 lightDir = _WorldSpaceLightPos0.xyz;

float3 viewDir = normalize(_WorldSpaceCameraPos - v2f.worldpos);

float3 lightColor = _LightColor0.rgb;

float3 albedo = tex2D(_MainTex, v2f.uv).rgb * _Color;

float oneMinusReflectivity;

albedo = EnergyConservationBetweenDiffuseAndSpecular(albedo,

_SpecularColor, oneMinusReflectivity);

float3 difuse = albedo * (unity_AmbientSky + (lightColor *

DotClamped(lightDir, normalize(v2f.normal))));

float3 specular = _SpecularColor * lightColor * pow(DotClamped(

normalize(lightDir + viewDir),

normalize(v2f.normal)), _Smoothness * 100);

return float4(difuse + specular, 1);

} Energy conservation
correction.

Physically Based Shading

• Physically Based Shading is a model that seeks to render
computer graphics in a way that more accurately simulates
the flow of light of the real world.
– Phong has been used by the game industry for a long time, but

nowadays is being replaced by physically-based shading.

– Unity introduced Physically Based Shading in Unity 5 (2015)

• Unity provides some functions that allow us to easy use the
physically based lightning computations in our shaders.

Physically Based Shading in Unity

CGPROGRAM

#pragma target 3.0

...

#include "UnityPBSLighting.cginc"

Just to make sure that Unity
selects an appropriated
shader level (3.0)

half4 UNITY_BRDF_PBS(half3 diffColor, half3 specColor,

half oneMinusReflectivity, half smoothness,

half3 normal, half3 viewDir,

UnityLight light, UnityIndirect gi)

Physically Based Shading in Unity
float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET{

float3 lightDir = _WorldSpaceLightPos0.xyz;

float3 viewDir = normalize(_WorldSpaceCameraPos - v2f.worldpos);

float3 lightColor = _LightColor0.rgb;

float3 albedo = tex2D(_MainTex, v2f.uv).rgb * _Color;

float oneMinusReflectivity;

albedo = EnergyConservationBetweenDiffuseAndSpecular(albedo,

_SpecularColor, oneMinusReflectivity);

UnityLight light;

light.color = lightColor;

light.dir = lightDir;

light.ndotl = DotClamped(normalize(v2f.normal),

lightDir);

UnityIndirect indirectLight;

indirectLight.diffuse = 0;

indirectLight.specular = 0;

return UNITY_BRDF_PBS(albedo, _SpecularColor, oneMinusReflectivity,

_Smoothness, normalize(v2f.normal), viewDir,

light, indirectLight);

}

Multiple Lights

• In order to add support for multiple lights, we need to add
more passes to the shader.

• These passes will have nearly identical code, so it is better to
move the shader code to an include file.
– The include file must have the extension ".cginc". Then it can be

included in the main shader program:

– When writing an include file is always important to prevent
redefinitions of inclusions:

#include "LightShader.cginc"

#if !defined(LIGHTSHADER_INCLUDED)

#define LIGHTSHADER_INCLUDED

...

#endif

Include file: LightShader.cginc
#if !defined(LIGHTSHADER_INCLUDED)

#define LIGHTSHADER_INCLUDED

#include "UnityPBSLighting.cginc"

float4 _Color;

...

struct VertexData {

...

};

struct VertexToFragment {

...

};

VertexToFragment MyVertexProgram(VertexData vert) {

...

}

float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET{

...

}

#endif

Multiple Lights – Main Shader
SubShader{

Pass{

Tags{"LightMode" = "ForwardBase"}

CGPROGRAM

#pragma target 3.0

#pragma vertex MyVertexProgram

#pragma fragment MyFragmentProgram

#include "LightShader.cginc"

ENDCG

}

Pass{

Tags{"LightMode" = "ForwardAdd"}

Blend One One

ZWrite Off

CGPROGRAM

#pragma target 3.0

#pragma vertex MyVertexProgram

#pragma fragment MyFragmentProgram

#include "LightShader.cginc"

ENDCG

}

}

The second pass will be
added to the base pass.

Combines the results of
the passes through a
additive blending.

The second pass don’t
need to write the
z-buffer.

Point Lights

• When we use directional light, _WorldSpaceLightPos0 contains
the direction of the light. But when we have a point light, the
variable represents the actual position of the light.

• So we need to compute the direction of the point light:

_WorldSpaceLightPos0 : float4 - Directional lights: (world

space direction, 0).

Other lights: (world space

position, 1).

float3 lightDir = normalize(_WorldSpaceLightPos0.xyz –

v2f.worldpos);

Note: the base pass only renders directional lights.
Point lights must be render in other passes.

Point Lights

• To simplify and organize our shader, we can create a function
to create the light:

UnityLight CreateLight(VertexToFragment v2f) {

UnityLight light;

light.dir = normalize(_WorldSpaceLightPos0.xyz - v2f.worldpos);

light.color = _LightColor0.rgb;

light.ndotl = DotClamped(normalize(v2f.normal), light.dir);

return light;

}

Point Lights

• Now we simply call the CreateLight function in the fragment
program:

float4 MyFragmentProgram(VertexToFragment v2f) :SV_TARGET{

float3 viewDir = normalize(_WorldSpaceCameraPos - v2f.worldpos);

float3 albedo = tex2D(_MainTex, v2f.uv).rgb * _Color;

float oneMinusReflectivity;

albedo = EnergyConservationBetweenDiffuseAndSpecular(albedo,

_SpecularColor, oneMinusReflectivity);

UnityIndirect indirectLight;

indirectLight.diffuse = 0;

indirectLight.specular = 0;

return UNITY_BRDF_PBS(albedo, _SpecularColor,

oneMinusReflectivity, _Smoothness,

normalize(v2f.normal), viewDir,

CreateLight(v2f), indirectLight);

}

Point Lights – Attenuation and Range

• Point lights have two additional properties:
– Light Attenuation: the distance of the light to the object's surface

effects the intensity of the light that hits the surface.

– Light Range: in real life, photons keep moving until they hit something.
But with distance, they become so weak that we can no longer see it.

• Unity provides a macro that simplifies the process to calculate
the correct attenuation factor:

UNITY_LIGHT_ATTENUATION(attenuation, shadowcoord, vertexWorldPos);

• We also have to change the second pass of the main shader program:

Point Lights – Attenuation and Range

#include "AutoLight.cginc"

UnityLight CreateLight(VertexToFragment v2f) {

UnityLight light;

light.dir = normalize(_WorldSpaceLightPos0.xyz - v2f.worldpos);

UNITY_LIGHT_ATTENUATION(attenuation, 0, v2f.worldpos);

light.color = _LightColor0.rgb * attenuation;

light.ndotl = DotClamped(normalize(v2f.normal), light.dir);

return light;

}

...

#pragma vertex MyVertexProgram

#pragma fragment MyFragmentProgram

#define POINT

#include "LightShader.cginc"

ENDCG

...

Used by the attenuation
macro to know when a point
light is being rendered.

Point Light and Directional Light

• In order to combine a point light with a directional light, our
shader must know how to correctly compute the light direction
depending on the type of light that is being rendered.

• We can use the POINT keyword:

UnityLight CreateLight(VertexToFragment v2f) {

UnityLight light;

#if defined(POINT)

light.dir = normalize(_WorldSpaceLightPos0.xyz - v2f.worldpos);

#else

light.dir = _WorldSpaceLightPos0.xyz;

#endif

UNITY_LIGHT_ATTENUATION(attenuation, 0, v2f.worldpos);

light.color = _LightColor0.rgb * attenuation;

light.ndotl = DotClamped(normalize(v2f.normal), light.dir);

return light;

}

Point Light and Directional Light

• Problem with keywords: they are applied during compilation
time.

• If we want our shader to work with all combinations of
directional and point lights, we need to compile multiple
versions of the shader.
– This can be done with the multi_compile command:

...

Blend One One

ZWrite Off

CGPROGRAM

#pragma target 3.0

#pragma multi_compile DIRECTIONAL POINT

#pragma vertex MyVertexProgram

#pragma fragment MyFragmentProgram

#include "LightShader.cginc"

ENDCG

...

Spot Lights

• Spot lights are very similar to point lights. In addition, the
UNITY_LIGHT_ATTENUATION macro already takes care of the
computations to create the light cone shape.

• We can simply add the SPOT keyword to our shader:

...

#pragma multi_compile DIRECTIONAL POINT SPOT

...

...

#if defined(POINT) || defined(SPOT)

light.dir = normalize(_WorldSpaceLightPos0.xyz - v2f.worldpos);

#else

light.dir = _WorldSpaceLightPos0.xyz;

#endif

...

Unity Rendering Pipeline

• Unity supports two main rendering paths:

– Forward Rendering: renders each object in one or more passes,
depending on lights that affect the object.
• Is based on the traditional linear graphics pipeline, where each geometry is

processed by the pipeline (one at a time) to produce the final image.

– Deferred Rendering: renders each object once on the first pass and
stores shading information into G-buffer textures. Additional passes
compute lighting based on G-buffer and depth in screen space.
• The rendering is "deferred" until all of the geometries have been processed by the

pipeline. The final image is produced by applying shading/lightning at the end.

Forward Rendering

Forward Rendering

• In Forward Rendering, lights can be rendered in 3 different ways:
– Some lights that affect each object are rendered in fully per-pixel mode

(number defined by the Pixel Light Count – Quality Setting).

– Up to 4 point lights are calculated per-vertex.

– The other lights are computed as spherical harmonics (SH – faster
method, but is only an approximation).

Note: groups overlap reduces the "light popping" effect.

Deferred Rendering

Deferred Rendering

• In Deferred Rendering, each object is rendered once on the first pass and
shading information is stored into G-buffer textures using multiple render
targets (MRT).

• Additional passes compute lighting based on G-buffer information in
screen space:

Color Depth Normal

Deferred Shaders
• The main difference between a forward shader and deferred

shader is the output of the fragment program:

struct FragmentOutput{

#if defined(DEFERRED_PASS)

float4 gBuffer0 : SV_Target0;

float4 gBuffer1 : SV_Target1;

float4 gBuffer2 : SV_Target2;

float4 gBuffer3 : SV_Target3;

#else

float4 color : SV_Target;

#endif

};

FragmentOutput MyFragmentProgram (Interpolators i) {

FragmentOutput output;

#if defined(DEFERRED_PASS)

//fill the buffers

#else

output.color = color;

#endif

return output;

}

Diffuse albedo and
the surface occlusion.

Specular color.

World-space normal
vectors.

Emission lighting.

Implementation Tutorial: http://catlikecoding.com/unity/tutorials/rendering/part-13/

http://catlikecoding.com/unity/tutorials/rendering/part-13/

Frame Debugger

• Window->Frame Debugger

Further Reading

• Hughes, J. F., et al. (2013). Computer Graphics: Principles
and Practice (3rd ed.). Upper Saddle River, NJ: Addison-
Wesley Professional. ISBN: 978-0-321-39952-6.

– Chapter 26: Light

– Chapter 27: Materials and Scattering

• Marschner, S., et al. (2015). Fundamentals of Computer
Graphics (4th ed.). A K Peters/CRC Press. ISBN: 978-
1482229394.

– Chapter 10: Surface Shading

– Chapter 18: Light

• Web:

– http://catlikecoding.com/unity/tutorials/rendering/part-4/

– http://catlikecoding.com/unity/tutorials/rendering/part-5/

http://catlikecoding.com/unity/tutorials/rendering/part-4/
http://catlikecoding.com/unity/tutorials/rendering/part-5/

