Computer Graphics

Lecture 06 — Light

Edirlei Soares de Lima
<edirlei.lima@universidadeeuropeia.pt>

The Physics of Light

Light is electromagnetic radiation of a frequency that can be
detected by the human eye (visible light).

From the optics view, light can be seen as electromagnetic
rays that travel in a straight line from its source.

— The light source emits rays of light.

— When the light hits an object, some of the light bounces off the object.

— If the reflected light hits our eyes (or the camera lens) —then we see
the object.

Angle of I Angle of
ncidence BAUAIE Refectior

LN

Reflected Ray

a

Incidant Hay

The Physics of Light

* Regular Reflection occurs when the angle at which light
initially hits a surface is equal to the angle at which light
bounces off the same surface.

— It occurs only when the rays fall on a highly smooth surface, such as a
mirror.

* Irregular Reflection occurs when the rays fall on an irregular
surface and are scattered in different directions.

Regular Reflection Irregular Reflection

Rays Reflected
rays Rays Reflected
rays

The Physics of Light

Light bulb emits ~ Mirror reflects Special cells in Glass -
white light. light. human eye absorb light. transmits light. Sun emits light.

[H 4 Y

Absorbs some light, which aids melting.

—— | Scatters most light, so it looks bright.

—

>

Ground
Absorbs some light (heats it up).
Scatters some light (which is
how we see it).

Red Chair Blue Shirt Tree
Absorbs all colors except red. Absorbs all colors except blue. Absorbs all colors except green.
Reflects (scatters) red. Reflects (scatters) blue. Reflects (scatters) green.

The Physics of Light

[Different wavelengths, } [Different amplitudes, J

different colors different brightness

AA

A
v

«\N—> L e

NAA NS
VYV IV A/

AR

Copyright © 2008 Pearson Prentice Hall, Inc.

Surface Normals

* When we simulate light in computer graphics, the object's
surface plays an important role. The surface normal vectors
define how light interacts with the surface.

* To asurface at a point P, the normal is a vector that is
perpendicular to the tangent plane to that surface at P.

+— Nomal

44— Plane

Normals in Unity Shaders

In order to access the surface normal in a Shader, we can add
a field to the vertex structure.

struct VertexData {
float4 position : POSITION;
float3 normal : NORMAL;

J

struct VertexToFragment {
float4 position : SV _POSITION;
float3 normal : NORMAL;

¥

VertexToFragment MyVertexProgram(VertexData vert) {
VertexToFragment v2f;
v2f.position = UnityObjectToClipPos (vert.position);
v2f.normal = UnityObjectToWorldNormal (vert.normal) ;

CEERen 2L \ Transform the normal from
local space to world space.

Lights in Unity Shaders

* Unity allows Shaders to have direct access to the light sources
in the current scene through built-in variables:

_WorldSpacelLightPos0O : float4 - directional lights (world space
direction)

_LightColor0O : fixed4 - Light color multiplied by the intensity

float4 MyFragmentProgram (VertexToFragment v2f) : SV TARGET {
float3 lightDir = WorldSpaceLightPosO.xyz;
float4 lightColor = LightColor0O.rgba;

\ Defined in "Lighting.cginc”,

} which must be included.

Diffuse Shading

 Many objects in the world have a surface appearance that s
not at all shiny (e.g. newspaper, unfinished wood, and dry,
unpolished stones).

— Such objects do not have a color change with a change in viewpoint.

* These objects can be considered as behaving as Lambertian
objects.

Lambertian Shading Model

Lambertian Shading (Diffuse): the color of a surface is
proportional to the cosine of the angle between the surface
normal and the direction to the light (Lambert’s cosine law).

K \\\ 1 n /7
0 v

c = c,cemax(0,n - 1)

where:
— c is the pixel color;
— ¢, is the diffuse coefficient, or the surface color;
— ¢; is the intensity of the light source;
— n-l=cos0

Lambertian Shading in Unity

* Inordertoimplement a Lambertian Shader we simply use the
Lambertian equation to compute the color in the fragment
program.

float4 MyFragmentProgram (VertexToFragment v2f) : SV TARGET/{
float3 lightDir = WorldSpacelLightPos0.xyz;
float4 lightColor = LightColor0.rgba;

return Color * lightColor * DotClamped(lightDir,
normalize (v2f.normal)) ;

Avoids negative dot products.

Pass{
Tags{
"LightMode" = "ForwardBase"

C}:GPROGRAM\ We also need to specify the light
mode used by the rendering
pipeline. In this case: ForwardBase.

Ambient Shading

* One problem with the Lambertian shading is that any point
whose normal faces away from the light will be black.

— In real life, light is reflected all over, and some light is incident from
every direction.

e A common approach to solve this is to add an ambient term to
the equation:

¢ =cr(cg + cgmax(0,n - 1))

— Where ¢, is the ambient color.

Ambient Shading in Unity

* Unity has a built-in variable that RBMMRNNN = Lighting :
defines the ambient color, which is e .
defined in the Lightning Settings. U e .

* We can add this variable to the e [shie
Lambertian equation. P mt.m,_“’

unity AmbientSky : fixed4 - Sky ambient lighting color in gradient
ambient lighting case.

float4 MyFragmentProgram (VertexToFragment v2f) : SV TARGET/{
float3 lightDir = WorldSpacelLightPos0.xyz;
float4 lightColor = LightColor0.rgba;

return Color * (unity AmbientSky + (lightColor *
DotClamped (lightDir, normalize(vZ2f.normal))));

Specular Shading

* Some surfaces have highlights (e.g. polished tile floors, gloss

paint, whiteboards). These highlights have the color of the
light and move across the surface as the viewpoint moves.

Phong Shading Model

Phong Shading (Specular): describes the way a surface
reflects light as a combination of the diffuse reflection of
rough surfaces with the specular reflection of shiny surfaces.

e+ 1

c=c(h- -n)P h =
(k) e+

where:

— cis the pixel color;

— ¢; is the intensity of the light source;
— e is the direction to the eye;

— lis the direction of the light;

— p is the phong exponent;

Phong Shading in Unity

* Inorder toimplement a Phong Shader in Unity, we need to
know the direction from the surface to the viewer. This
requires the world-space position of the vertex.

struct VertexToFragment {
float4 position : SV _POSITION;
float3 normal : NORMAL;
float4 worldpos : TEXCOORDZ2;

} i

VertexToFragment MyVertexProgram(VertexData vert) {
VertexToFragment v2f;

v2f.position = UnityObjectToClipPos (vert.position);

v2f.normal = UnityObjectToWorldNormal (vert.normal) ;
v2f.worldpos = mul (unity ObjectToWorld, vert.position);
return v2f;

J \ Transform the vertex position

from local space to world space.

Phong Shading in Unity

* With the vertex position in world space, we can use the Phong
equation in fragment program:

Properties

{
_Color("Color", Color) = (1, 1, 1, 1)
_Smoothness ("Smoothness", Range (0, 1)) = 0.5
_SpecularColor ("Specular", Color) = (0.5, 0.5, O

}

float Smoothness;
float4d SpecularColor;

float4 MyFragmentProgram (VertexToFragment v2f) :SV TARGET{

float3 lightDir = WorldSpaceLightPos0.xyz;
float3 viewDir = normalize(WorldSpaceCameraPos - v2f.worldpos);
float4 lightColor = LightColor0.rgba;

return lightColor * pow (DotClamped(normalize (lightDir + viewDir),
normalize (v2f.normal)), Smoothness * 100);

Phong Shading in Unity

* We can also combine of the diffuse reflection of
the Lambertian model with the specular reflection
of the Phong model:

float4 MyFragmentProgram(VertexToFragment v2f) :SV TARGET{

float3 lightDir = WorldSpaceLightPos0.xyz;

float3 viewDir = normalize(WorldSpaceCameraPos - v2f.worldpos):;

float4 lightColor = LightColor0.rgba;

float4 difuse = Color * (unity AmbientSky + (lightColor *
DotClamped (lightDir, normalize (vZ2f.normal))));

float4 specular = SpecularColor * lightColor * pow (DotClamped (

normalize (lightDir + viewDir),
normalize (v2f.normal)), Smoothness * 100);

return difuse + specular;

Phong Shading in Unity

e We can also add a texture to the shader:

Properties{

_MainTex ("Albedo", 2D) = "white" {}
}

sampler2D MainTex;
float4 MainTex ST;

struct VertexData {
float4 position : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORDO;

}s

struct VertexToFragment {
float4 position : SV _POSITION;
float2 uv : TEXCOORDO;
float3 normal : NORMAL;
float4 worldpos : TEXCOORDI;

b g

Phong Shading in Unity

e We can also add a texture to the shader:

VertexToFragment MyVertexProgram(VertexData vert) {
VertexToFragment v2f;
v2f.position = UnityObjectToClipPos (vert.position);
v2f.worldpos = mul (unity ObjectToWorld, vert.position);
v2f.normal = UnityObjectToWorldNormal (vert.normal) ;
v2f.uv = TRANSFORM TEX (vert.uv, MainTex);
return v2f;

}
float4 MyFragmentProgram (VertexToFragment v2f) :SV TARGET/{

float3 lightDir = WorldSpaceLightPos0.xyz;
float3 viewDir = normalize(WorldSpaceCameraPos - v2Z2f.worldpos):;
float4 lightColor = LightColor0.rgba;

float4 albedo = tex2D(MainTex, v2f.uv).rgba * Color;
float4 difuse = albedo * (unity AmbientSky + (lightColor *
DotClamped (lightDir, normalize (v2f.normal))));
float4 specular = SpecularColor * lightColor * pow (DotClamped (
normalize (lightDir + viewDir),
normalize(v2f.normal)), Smoothness * 100);
return difuse + specular;

Phong Shading in Unity

* Energy conservation problem: when light hits a
surface, only part of it bounces off as specular light.

float4 MyFragmentProgram(VertexToFragment v2f) :SV TARGET

float3 lightDir = WorldSpaceLightPos0.xyz;
float3 viewDir = normalize(WorldSpaceCameraPos - v2Z2f.worldpos);
float3 lightColor = LightColor0.rgb;

float3 albedo = tex2D(MainTex, v2f.uv).rgb * Color;

float oneMinusReflectivity;

albedo = EnergyConservationBetweenDiffuseAndSpecular (albedo,

SpecularColor, oneMinusReflectivity);

float3 difuse = albedo * (unity AxpientSky + (lightColor *
DotClamped (11dRtDir, normalize (v2f.normal))));

float3 specular = SpecularColor * lighgColor * pow (DotClamped (
normalize (lightDir
normalize (v2f.normal))

return float4 (difuse + specular, 1);

viewDir),
Smoothness * 100);

Energy conservation
correction.

Physically Based Shading

* Physically Based Shading is a model that seeks to render
computer graphics in a way that more accurately simulates
the flow of light of the real world.

— Phong has been used by the game industry for a long time, but
nowadays is being replaced by physically-based shading.

— Unity introduced Physically Based Shading in Unity 5 (2015)

Physically Based Shading in Unity

* Unity provides some functions that allow us to easy use the
physically based lightning computations in our shaders.

CGPROGRAM

#pragma target 3.0 < Just to make sure that Unity

selects an appropriated
shader level (3.0)

#include "UnityPBSLighting.cginc"

half4 UNITY BRDF PBS(half3 diffColor, half3 specColor,
half oneMinusReflectivity, half smoothness,
half3 normal, half3 viewDir,
UnityLight light, UnityIndirect gi)

Physically Based Shading in Unity

float4 MyFragmentProgram (VertexToFragment v2f) :SV TARGET{

float3 lightDir = WorldSpacelLightPos0.xyz;
float3 viewDir = normalize(WorldSpaceCameraPos - v2f.worldpos);
float3 lightColor = LightColor0O.rgb;

float3 albedo = tex2D(MainTex, vZ2f.uv).rgb * Color;

float oneMinusReflectivity;

albedo = EnergyConservationBetweenDiffuseAndSpecular (albedo,

_SpecularColor, oneMinusReflectivity);

UnityLight light;

light.color = lightColor;

light.dir = lightDir;

light.ndotl = DotClamped(normalize (v2f.normal),
lightDir);

UnityIndirect indirectLight;

indirectLight.diffuse = 0;

indirectLight.specular = 0;

return UNITY BRDF PBS (albedo, SpecularColor, oneMinusReflectivity,
_Smoothness, normalize(vZ2f.normal), viewDir,
light, indirectLight);

Multiple Lights

In order to add support for multiple lights, we need to add
more passes to the shader.

These passes will have nearly identical code, so it is better to
move the shader code to an include file.

— The include file must have the extension ".cginc". Then it can be
included in the main shader program:

#include "LightShader.cginc"

— When writing an include file is always important to prevent
redefinitions of inclusions:

#if !defined (LIGHTSHADER INCLUDED)
#define LIGHTSHADER INCLUDED

#endif

Include file: LightShader.cginc

#1f !defined (LIGHTSHADER INCLUDED)
#define LIGHTSHADER INCLUDED

#include "UnityPBSLighting.cginc"

float4 Color;

struct VertexData {

¥

struct VertexToFragment {

¥

VertexToFragment MyVertexProgram(VertexData vert) {

}
float4 MyFragmentProgram(VertexToFragment v2f) :SV TARGET/{

}
#fendif

}

Pass{

Multiple Lights — Main Shader

SubShader{
Pass{

Tags{"LightMode" = "ForwardBase"}
CGPROGRAM

#pragma target 3.0

#fpragma vertex MyVertexProgram
#fpragma fragment MyFragmentProgram
#include "LightShader.cginc"

ENDCG

Tags{"LightMode" = "ForwardAdd"} «——

The second pass will be
added to the base pass.

Blend One One
CGPROGRAM

#pragma target 3.0

Combines the results of
the passes through a
additive blending.

#fpragma vertex MyVertexProgram

#fpragma fragment MyFragmentProgram
#include "LightShader.cginc"
ENDCG

The second pass don’t

need to write the
z-buffer.

Point Lights

* When we use directional light, WorldSpaceLightPosO contains
the direction of the light. But when we have a point light, the
variable represents the actual position of the light.

_WorldSpaceLightPosO : float4 - Directional lights: (world
space direction, 0).
Other lights: (world space
position, 1).

* So we need to compute the direction of the point light:

float3 lightDir = normalize(WorldSpaceLightPosO.xyz -
v2f.worldpos);

Note: the base pass only renders directional lights.
Point lights must be render in other passes.

Point Lights

* To simplify and organize our shader, we can create a function
to create the light:

UnityLight Createlight (VertexToFragment v2f) {
UnityLight light;
light.dir = normalize(WorldSpacelLightPosO.xyz - v2f.worldpos);
light.color = LightColor0.rgb;

light.ndotl = DotClamped (normalize(v2f.normal), light.dir);
return light;

Point Lights

* Now we simply call the CreatelLight function in the fragment
program:

float4 MyFragmentProgram (VertexToFragment v2f) :SV _TARGET/{
float3 viewDir = normalize (WorldSpaceCameraPos - v2f.worldpos);
float3 albedo = tex2D(MainTex, vZ2f.uv).rgb * Color;
float oneMinusReflectivity;
albedo = EnergyConservationBetweenDiffuseAndSpecular (albedo,
_SpecularColor, oneMinusReflectivity);

UnityIndirect indirectLight;
indirectLight.diffuse = 0;
indirectLight.specular = 0;

return UNITY BRDF PBS (albedo, SpecularColor,
oneMinusReflectivity, Smoothness,
normalize (v2f.normal), viewDir,
CreatelLight (v2f), indirectLight);

Point Lights — Attenuation and Range

* Point lights have two additional properties:

— Light Attenuation: the distance of the light to the object's surface
effects the intensity of the light that hits the surface.

— Light Range: in real life, photons keep moving until they hit something.
But with distance, they become so weak that we can no longer see it.

e Unity provides a macro that simplifies the process to calculate
the correct attenuation factor:

UNITY LIGHT ATTENUATION (attenuation, shadowcoord, vertexWorldPos);

Point Lights — Attenuation and Range

#include "AutoLight.cginc"

UnityLight Createlight (VertexToFragment v2f) {
UnityLight light;
light.dir = normalize(WorldSpaceLightPosO.xyz - v2f.worldpos);
UNITY_LIGHT_ATTENUATION(attenuation, 0, v2f.worldpos);
light.color = LightColor0O.rgb * attenuation;
light.ndotl = DotClamped (normalize(vZ2f.normal), light.dir);
return light;

* We also have to change the second pass of the main shader program:

fpragma vertex MyVertexProgram

#tpragma fragment MyFragmentProgram :
#tdefine POINT +— Used by the attenuation

#include "LightShader.cginc" macro to know when a point
ENDCG light is being rendered.

Point Light and Directional Light

* Inorder to combine a point light with a directional light, our
shader must know how to correctly compute the light direction
depending on the type of light that is being rendered.

* We can use the POINT keyword:

UnityLight Createlight (VertexToFragment v2f) {
UnityLight light;
#1f defined (POINT)

light.dir
#else

light.dir
#endif

UNITY LIGHT

light.color
light.ndotl

= normalize (WorldSpaceLightPos0O.xyz - v2f.worldpos);
= WorldSpaceLightPosO.xyz;
ATTENUATION (attenuation, 0, v2f.worldpos):;

= LightColor0O.rgb * attenuation;
= DotClamped (normalize(v2f.normal), light.dir);

return light;

Point Light and Directional Light

* Problem with keywords: they are applied during compilation
time.

 |f we want our shader to work with all combinations of
directional and point lights, we need to compile multiple
versions of the shader.

— This can be done with the multi_compile command:

Blend One One

ZWrite Off

CGPROGRAM

#pragma target 3.0

#pragma multi compile DIRECTIONAL POINT
#fpragma vertex MyVertexProgram

fpragma fragment MyFragmentProgram
#include "LightShader.cginc"

ENDCG

Spot Lights

Spot lights are very similar to point lights. In addition, the
UNITY_LIGHT _ATTENUATION macro already takes care of the
computations to create the light cone shape.

We can simply add the SPOT keyword to our shader:

#pragma multi compile DIRECTIONAL POINT SPOT

#1f defined (POINT) || defined (SPOT)
light.dir = normalize(WorldSpaceLightPosO.xyz - v2Z2f.worldpos):;
#else
light.dir = WorldSpacelLightPos0.xyz;
#endif

Unity Rendering Pipeline

* Unity supports two main rendering paths:

— Forward Rendering: renders each object in one or more passes,
depending on lights that affect the object.

* |s based on the traditional linear graphics pipeline, where each geometry is
processed by the pipeline (one at a time) to produce the final image.

— Deferred Rendering: renders each object once on the first pass and
stores shading information into G-buffer textures. Additional passes
compute lighting based on G-buffer and depth in screen space.

* The rendering is "deferred" until all of the geometries have been processed by the
pipeline. The final image is produced by applying shading/lightning at the end.

Forward Rendering

VS Lot GS |l FS
VS Lot GS |l FS
VS 1ot GS | FS
VS Lot GS |l FS

Forward Rendering

* In Forward Rendering, lights can be rendered in 3 different ways:

— Some lights that affect each object are rendered in fully per-pixel mode
(number defined by the Pixel Light Count — Quality Setting).

— Up to 4 point lights are calculated per-vertex.

— The other lights are computed as spherical harmonics (SH — faster
method, but is only an approximation).

G =)= B Per-pixel SH
Eil Per-vertex

e 3% ABCDTETFGH

ale
b 208 \\
alg
C of o
i)

o Additional render passes
0

oS
0

A Note: groups overlap reduces the "light popping" effect.

Deferred Rendering

Deferred Rendering

In Deferred Rendering, each object is rendered once on the first pass and
shading information is stored into G-buffer textures using multiple render
targets (MRT).

A A
Color Depth Normal

Additional passes compute lighting based on G-buffer information in
screen space:

Deferred Shaders

* The main difference between a forward shader and deferred
shader is the output of the fragment program:

struct FragmentOutput{
#if defined (DEFERRED PASS)

float4
float4
float4
float4
#else
float4
#endif

[

gBufferO
gBufferl
gBuffer?
gBuffer3

color :

SV_TargetO;
SV_Targetl;
SV_Target2;
SV_Target3;

SV_Target;

FragmentOutput MyFragmentProgram
FragmentOutput output;
#if defined (DEFERRED PASS)
//fill the buffers

#else

output.color =

#endif

return output;

color;

Diffuse albedo and

/ the surface occlusion.

< Specular color.

\ World-space normal

\ vectors.

Emission lighting.

(Interpolators 1) {

J Implementation Tutorial: http://catlikecoding.com/unity/tutorials/rendering/part-13/

http://catlikecoding.com/unity/tutorials/rendering/part-13/

Frame Debugger

 Window->Frame Debugger

Further Reading

* Hughes, J. F, et al. (2013). Computer Graphics: Principles computer Graprics
and Practice (3rd ed.). Upper Saddle River, NJ: Addison-
Wesley Professional. ISBN: 978-0-321-39952-6.

— Chapter 26: Light
— Chapter 27: Materials and Scattering

 Marschner, S., et al. (2015). Fundamentals of Computer
Graphics (4th ed.). A K Peters/CRC Press. ISBN: 978- Err e
1482229394. of Computer Graphics

— Chapter 10: Surface Shading
— Chapter 18: Light

e Web:
— http://catlikecoding.com/unity/tutorials/rendering/part-4/
— http://catlikecoding.com/unity/tutorials/rendering/part-5/

http://catlikecoding.com/unity/tutorials/rendering/part-4/
http://catlikecoding.com/unity/tutorials/rendering/part-5/

